Suppr超能文献

用于多视图渐进子空间聚类的深度对抗不一致认知采样

Deep Adversarial Inconsistent Cognitive Sampling for Multiview Progressive Subspace Clustering.

作者信息

Sun Renhao, Wang Yang, Zhang Zhao, Hong Richang, Wang Meng

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Jul 12;PP. doi: 10.1109/TNNLS.2021.3093419.

Abstract

Deep multiview clustering methods have achieved remarkable performance. However, all of them failed to consider the difficulty labels (uncertainty of ground truth for training samples) over multiview samples, which may result in a nonideal clustering network for getting stuck into poor local optima during the training process; worse still, the difficulty labels from the multiview samples are always inconsistent, and such a fact makes it even more challenging to handle. In this article, we propose a novel deep adversarial inconsistent cognitive sampling (DAICS) method for multiview progressive subspace clustering. A multiview binary classification (easy or difficult) loss and a feature similarity loss are proposed to jointly learn a binary classifier and a deep consistent feature embedding network, throughout an adversarial minimax game over difficulty labels of multiview consistent samples. We develop a multiview cognitive sampling strategy to select the input samples from easy to difficult for multiview clustering network training. However, the distributions of easy and difficult samples are mixed together, hence not trivial to achieve the goal. To resolve it, we define a sampling probability with a theoretical guarantee. Based on that, a golden section mechanism is further designed to generate a sample set boundary to progressively select the samples with varied difficulty labels via a gate unit, which is utilized to jointly learn a multiview common progressive subspace and clustering network for more efficient clustering. Experimental results on four real-world datasets demonstrate the superiority of DAICS over state-of-the-art methods.

摘要

深度多视图聚类方法已经取得了显著的性能。然而,它们都未能考虑多视图样本上的困难标签(训练样本的真实标签的不确定性),这可能导致在训练过程中陷入不良局部最优的不理想聚类网络;更糟糕的是,多视图样本的困难标签总是不一致的,这一事实使得处理起来更具挑战性。在本文中,我们提出了一种用于多视图渐进子空间聚类的新颖的深度对抗不一致认知采样(DAICS)方法。提出了一种多视图二分类(容易或困难)损失和一种特征相似性损失,通过对多视图一致样本的困难标签进行对抗性极大极小博弈,联合学习一个二分类器和一个深度一致特征嵌入网络。我们开发了一种多视图认知采样策略,用于从易到难选择输入样本进行多视图聚类网络训练。然而,容易样本和困难样本的分布混合在一起,因此实现这一目标并非易事。为了解决这个问题,我们定义了一个具有理论保证的采样概率。在此基础上,进一步设计了一种黄金分割机制,通过一个门单元生成一个样本集边界,以逐步选择具有不同困难标签的样本,用于联合学习多视图公共渐进子空间和聚类网络,从而实现更高效的聚类。在四个真实世界数据集上的实验结果证明了DAICS相对于现有方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验