Marconot Olivier, Juneau-Fecteau Alexandre, Fréchette Luc G
Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada.
Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada.
Sci Rep. 2021 Jul 12;11(1):14347. doi: 10.1038/s41598-021-93695-7.
Bringing bodies close together at sub-micron distances can drastically enhance radiative heat transfer, leading to heat fluxes greater than the blackbody limit set by Stefan-Boltzmann law. This effect, known as near-field radiative heat transfer (NFRHT), has wide implications for thermal management in microsystems, as well as technological applications such as direct heat to electricity conversion in thermophotovoltaic cells. Here, we demonstrate NFRHT from microfabricated hotplates made by surface micromachining of [Formula: see text]/[Formula: see text] thin films deposited on a sacrificial amorphous Si layer. The sacrificial layer is dry etched to form wide membranes ([Formula: see text]) separated from the substrate by nanometric distances. Nickel traces allow both resistive heating and temperature measurement on the micro-hotplates. We report on two samples with measured gaps of [Formula: see text] and [Formula: see text]. The membranes can be heated up to [Formula: see text] under vacuum with no mechanical damage. At [Formula: see text] we observed a 6.4-fold enhancement of radiative heat transfer compared to far-field emission for the smallest gap and a 3.5-fold enhancement for the larger gap. Furthermore, the measured transmitted power exhibits an exponential dependence with respect to gap size, a clear signature of NFRHT. Calculations of photon transmission probabilities indicate that the observed increase in heat transfer can be attributed to near-field coupling by surface phonon-polaritons supported by the [Formula: see text] films. The fabrication process presented here, relying solely on well-established surface micromachining technology, is a key step toward integration of NFRHT in industrial applications.
将物体在亚微米距离下紧密靠近,可显著增强辐射热传递,导致热通量超过斯特藩 - 玻尔兹曼定律设定的黑体极限。这种效应被称为近场辐射热传递(NFRHT),对微系统中的热管理以及诸如热光伏电池中直接将热转化为电等技术应用具有广泛影响。在此,我们展示了通过对沉积在牺牲性非晶硅层上的[化学式:见原文]/[化学式:见原文]薄膜进行表面微加工制成的微型热板的近场辐射热传递。对牺牲层进行干法蚀刻,以形成与衬底相隔纳米距离的宽膜([化学式:见原文])。镍迹线允许在微型热板上进行电阻加热和温度测量。我们报告了两个样品,测量的间隙分别为[化学式:见原文]和[化学式:见原文]。这些膜在真空中可加热至[化学式:见原文]而无机械损伤。在[化学式:见原文]时,我们观察到对于最小间隙,与远场发射相比,辐射热传递增强了6.4倍,对于较大间隙则增强了3.5倍。此外,测量的传输功率对间隙尺寸呈现指数依赖性,这是近场辐射热传递的明显特征。光子传输概率的计算表明,观察到的热传递增加可归因于由[化学式:见原文]薄膜支持的表面声子 - 极化激元的近场耦合。这里介绍的制造工艺仅依赖于成熟的表面微加工技术,是将近场辐射热传递集成到工业应用中的关键一步。