Vieira Eliana M F, Silva José P B, Veltruská Kateřina, Istrate Cosmin M, Lenzi Veniero, Trifiletti Vanira, Lorenzi Bruno, Matolín Vladimír, Ghica Corneliu, Marques Luis, Fenwick Oliver, Goncalves Luis M
CMEMS-UMINHO, Universidade do Minho, Campus Azurem, 4804-533 Guimaraes, Portugal.
Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal.
ACS Appl Mater Interfaces. 2021 Jul 28;13(29):35187-35196. doi: 10.1021/acsami.1c09748. Epub 2021 Jul 13.
Achieving thermoelectric devices with high performance based on low-cost and nontoxic materials is extremely challenging. Moreover, as we move toward an Internet-of-Things society, a miniaturized local power source such as a thermoelectric generator (TEG) is desired to power increasing numbers of wireless sensors. Therefore, in this work, an all-oxide p-n junction TEG composed of low-cost, abundant, and nontoxic materials, such as n-type ZnO and p-type SnO thin films, deposited on borosilicate glass substrate is proposed. A type II heterojunction between SnO and ZnO films was predicted by density functional theory (DFT) calculations and confirmed experimentally by X-ray photoelectron spectroscopy (XPS). Moreover, scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDS) show a sharp interface between the SnO and ZnO layers, confirming the high quality of the p-n junction even after annealing at 523 K. ZnO and SnO thin films exhibit Seebeck coefficients (α) of ∼121 and ∼258 μV/K, respectively, at 298 K, resulting in power factors (PF) of 180 μW/m K (for ZnO) and 37 μW/m K (for SnO). Moreover, the thermal conductivities of ZnO and SnO films are 8.7 and 1.24 W/m K, respectively, at 298 K, with no significant changes until 575 K. The four pairs all-oxide TEG generated a maximum power output () of 1.8 nW (≈126 μW/cm) at a temperature difference of 160 K. The output voltage () and output current () at the maximum power output of the TEG are 124 mV and 0.0146 μA, respectively. This work paves the way for achieving a high-performance TEG device based on oxide thin films.
基于低成本且无毒的材料实现高性能的热电器件极具挑战性。此外,随着我们迈向物联网社会,人们期望一种小型化的本地电源,如热电发电机(TEG),来为越来越多的无线传感器供电。因此,在这项工作中,提出了一种全氧化物p-n结TEG,它由沉积在硼硅酸盐玻璃衬底上的低成本、储量丰富且无毒的材料组成,如n型ZnO和p型SnO薄膜。通过密度泛函理论(DFT)计算预测了SnO和ZnO薄膜之间的II型异质结,并通过X射线光电子能谱(XPS)进行了实验验证。此外,扫描透射电子显微镜(STEM)与能量色散X射线光谱(EDS)相结合显示了SnO和ZnO层之间的清晰界面,证实了即使在523 K退火后p-n结的高质量。ZnO和SnO薄膜在298 K时的塞贝克系数(α)分别约为121和258 μV/K,导致功率因子(PF)分别为180 μW/m K(对于ZnO)和37 μW/m K(对于SnO)。此外,ZnO和SnO薄膜在298 K时的热导率分别为8.7和1.24 W/m K,直到575 K都没有显著变化。四对全氧化物TEG在160 K的温差下产生的最大功率输出()为1.8 nW(≈126 μW/cm)。TEG在最大功率输出时的输出电压()和输出电流()分别为124 mV和0.0146 μA。这项工作为基于氧化物薄膜实现高性能TEG器件铺平了道路。