Suppr超能文献

使用分步深度学习并结合手动校正来减少手动操作时间,从而获得用于体式电子显微镜的分割学习模型。

Reducing manual operation time to obtain a segmentation learning model for volume electron microscopy using stepwise deep learning with manual correction.

机构信息

Research and Development Division, Nikon Corporation, 471, Nagaodai, Sakae, Yokohama, Kanagawa 244-8533, Japan.

Healthcare Business Unit, Nikon Corporation, 471, Nagaodai, Sakae, Yokohama, Kanagawa 244-8533, Japan.

出版信息

Microscopy (Oxf). 2021 Nov 24;70(6):526-535. doi: 10.1093/jmicro/dfab025.

Abstract

Three-dimensional (3D) observation of a biological sample using serial-section electron microscopy is widely used. However, organelle segmentation requires a significant amount of manual time. Therefore, several studies have been conducted to improve organelle segmentation's efficiency. One such promising method is 3D deep learning (DL), which is highly accurate. However, the creation of training data for 3D DL still requires manual time and effort. In this study, we developed a highly efficient integrated image segmentation tool that includes stepwise DL with manual correction. The tool has four functions: efficient tracers for annotation, model training/inference for organelle segmentation using a lightweight convolutional neural network, efficient proofreading and model refinement. We applied this tool to increase the training data step by step (stepwise annotation method) to segment the mitochondria in the cells of the cerebral cortex. We found that the stepwise annotation method reduced the manual operation time by one-third compared with the fully manual method, where all the training data were created manually. Moreover, we demonstrated that the F1 score, the metric of segmentation accuracy, was 0.9 by training the 3D DL model with these training data. The stepwise annotation method using this tool and the 3D DL model improved the segmentation efficiency of various organelles.

摘要

使用连续切片电子显微镜对生物样本进行三维(3D)观察被广泛应用。然而,细胞器的分割需要大量的手动时间。因此,已经进行了一些研究来提高细胞器分割的效率。一种很有前途的方法是 3D 深度学习(DL),它具有很高的准确性。然而,3D DL 的训练数据的创建仍然需要手动的时间和精力。在这项研究中,我们开发了一种高效的集成图像分割工具,它包括带有手动修正的逐步 DL。该工具具有四个功能:用于注释的高效跟踪器、使用轻量级卷积神经网络进行细胞器分割的模型训练/推断、高效校对和模型改进。我们应用该工具逐步增加训练数据(逐步注释方法),以分割大脑皮层细胞中的线粒体。我们发现,与完全手动方法(即所有训练数据都是手动创建的)相比,分步注释方法将手动操作时间减少了三分之一。此外,我们通过使用这些训练数据训练 3D DL 模型,证明了分割精度的度量 F1 分数为 0.9。使用该工具和 3D DL 模型的分步注释方法提高了各种细胞器的分割效率。

相似文献

3
Segmentor: a tool for manual refinement of 3D microscopy annotations.
BMC Bioinformatics. 2021 May 22;22(1):260. doi: 10.1186/s12859-021-04202-8.
4
Deep-learning convolutional neural network: Inner and outer bladder wall segmentation in CT urography.
Med Phys. 2019 Feb;46(2):634-648. doi: 10.1002/mp.13326. Epub 2019 Jan 4.
5
Automated segmentation of cell organelles in volume electron microscopy using deep learning.
Microsc Res Tech. 2024 Aug;87(8):1718-1732. doi: 10.1002/jemt.24548. Epub 2024 Mar 19.
6
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
Med Phys. 2020 Jun;47(6):2413-2426. doi: 10.1002/mp.14134. Epub 2020 Apr 8.
7
A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy.
Med Phys. 2018 Nov;45(11):5129-5137. doi: 10.1002/mp.13221. Epub 2018 Oct 28.
8
Training a deep learning model for single-cell segmentation without manual annotation.
Sci Rep. 2021 Dec 14;11(1):23995. doi: 10.1038/s41598-021-03299-4.
9
HIVE-Net: Centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in EM images.
Comput Methods Programs Biomed. 2021 Mar;200:105925. doi: 10.1016/j.cmpb.2020.105925. Epub 2021 Jan 10.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验