University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071.
Neuroscience Research Group (NEUROS), Universidad del Rosario, Bogotá, Colombia 111711.
J Neurosci. 2021 Aug 18;41(33):7086-7102. doi: 10.1523/JNEUROSCI.2849-20.2021. Epub 2021 Jul 14.
The G-protein-gated inwardly rectifying potassium (Kir3/GIRK) channel is the effector of many G-protein-coupled receptors (GPCRs). Its dysfunction has been linked to the pathophysiology of Down syndrome, Alzheimer's and Parkinson's diseases, psychiatric disorders, epilepsy, drug addiction, or alcoholism. In the hippocampus, GIRK channels decrease excitability of the cells and contribute to resting membrane potential and inhibitory neurotransmission. Here, to elucidate the role of GIRK channels activity in the maintenance of hippocampal-dependent cognitive functions, their involvement in controlling neuronal excitability at different levels of complexity was examined in C57BL/6 male mice. For that purpose, GIRK activity in the dorsal hippocampus CA3-CA1 synapse was pharmacologically modulated by two drugs: ML297, a GIRK channel opener, and Tertiapin-Q (TQ), a GIRK channel blocker. , using dorsal hippocampal slices, we studied the effect of pharmacological GIRK modulation on synaptic plasticity processes induced in CA1 by Schaffer collateral stimulation. , we performed acute intracerebroventricular (i.c.v.) injections of the two GIRK modulators to study their contribution to electrophysiological properties and synaptic plasticity of dorsal hippocampal CA3-CA1 synapse, and to learning and memory capabilities during hippocampal-dependent tasks. We found that pharmacological disruption of GIRK channel activity by i.c.v. injections, causing either function gain or function loss, induced learning and memory deficits by a mechanism involving neural excitability impairments and alterations in the induction and maintenance of long-term synaptic plasticity processes. These results support the contention that an accurate control of GIRK activity must take place in the hippocampus to sustain cognitive functions. Cognitive processes of learning and memory that rely on hippocampal synaptic plasticity processes are critically ruled by a finely tuned neural excitability. G-protein-gated inwardly rectifying K (GIRK) channels play a key role in maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Here, we demonstrate that modulation of GIRK channels activity, causing either function gain or function loss, transforms high-frequency stimulation (HFS)-induced long-term potentiation (LTP) into long-term depression (LTD), inducing deficits in hippocampal-dependent learning and memory. Together, our data show a crucial GIRK-activity-mediated mechanism that governs synaptic plasticity direction and modulates subsequent hippocampal-dependent cognitive functions.
G 蛋白门控内向整流钾 (Kir3/GIRK) 通道是许多 G 蛋白偶联受体 (GPCR) 的效应器。其功能障碍与唐氏综合征、阿尔茨海默病和帕金森病、精神障碍、癫痫、药物成瘾或酒精中毒的病理生理学有关。在海马体中,GIRK 通道降低细胞的兴奋性,并有助于静息膜电位和抑制性神经传递。在这里,为了阐明 GIRK 通道活性在维持海马体依赖性认知功能中的作用,研究了它们在不同复杂程度下控制神经元兴奋性的作用,在 C57BL/6 雄性小鼠中进行了研究。为此,通过两种药物在背海马 CA3-CA1 突触处药理学调节 GIRK 活性:ML297,GIRK 通道 opener 和 Tertiapin-Q(TQ),GIRK 通道阻断剂。使用背海马切片,我们研究了 CA1 中由 Schaffer 侧支刺激诱导的突触可塑性过程的药理学 GIRK 调节的影响。我们进行了急性脑室内 (i.c.v.) 注射两种 GIRK 调节剂,以研究它们对背海马 CA3-CA1 突触的电生理特性和突触可塑性的贡献,以及在海马体依赖性任务中学习和记忆能力。我们发现,通过 i.c.v. 注射药理学破坏 GIRK 通道活性,导致功能增益或功能丧失,通过涉及神经兴奋性损伤和长时程突触可塑性过程的诱导和维持改变的机制诱导学习和记忆缺陷。这些结果支持这样一种观点,即必须在海马体中进行精确的 GIRK 活性控制,以维持认知功能。依赖于海马体突触可塑性过程的学习和记忆认知过程受到精细调节的神经兴奋性的严格控制。G 蛋白门控内向整流钾 (GIRK) 通道在维持静息膜电位、细胞兴奋性和抑制性神经传递中发挥关键作用。在这里,我们证明,GIRK 通道活性的调节,导致功能增益或功能丧失,将高频刺激 (HFS) 诱导的长时程增强 (LTP) 转化为长时程抑制 (LTD),导致海马体依赖性学习和记忆缺陷。总之,我们的数据显示了一种关键的 GIRK 活性介导的机制,它控制着突触可塑性的方向,并调节随后的海马体依赖性认知功能。