Suppr超能文献

用于脑电图情感识别的优化投影与Fisher判别字典学习

Optimized Projection and Fisher Discriminative Dictionary Learning for EEG Emotion Recognition.

作者信息

Gu Xiaoqing, Fan Yiqing, Zhou Jie, Zhu Jiaqun

机构信息

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China.

Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.

出版信息

Front Psychol. 2021 Jun 28;12:705528. doi: 10.3389/fpsyg.2021.705528. eCollection 2021.

Abstract

Electroencephalogram (EEG)-based emotion recognition (ER) has drawn increasing attention in the brain-computer interface (BCI) due to its great potentials in human-machine interaction applications. According to the characteristics of rhythms, EEG signals usually can be divided into several different frequency bands. Most existing methods concatenate multiple frequency band features together and treat them as a single feature vector. However, it is often difficult to utilize band-specific information in this way. In this study, an optimized projection and Fisher discriminative dictionary learning (OPFDDL) model is proposed to efficiently exploit the specific discriminative information of each frequency band. Using subspace projection technology, EEG signals of all frequency bands are projected into a subspace. The shared dictionary is learned in the projection subspace such that the specific discriminative information of each frequency band can be utilized efficiently, and simultaneously, the shared discriminative information among multiple bands can be preserved. In particular, the Fisher discrimination criterion is imposed on the atoms to minimize within-class sparse reconstruction error and maximize between-class sparse reconstruction error. Then, an alternating optimization algorithm is developed to obtain the optimal solution for the projection matrix and the dictionary. Experimental results on two EEG-based ER datasets show that this model can achieve remarkable results and demonstrate its effectiveness.

摘要

基于脑电图(EEG)的情感识别(ER)因其在人机交互应用中的巨大潜力,在脑机接口(BCI)领域受到了越来越多的关注。根据节律特征,EEG信号通常可分为几个不同的频段。大多数现有方法将多个频段特征连接在一起,并将它们视为单个特征向量。然而,以这种方式往往难以利用特定频段的信息。在本研究中,提出了一种优化投影和Fisher判别字典学习(OPFDDL)模型,以有效利用每个频段的特定判别信息。利用子空间投影技术,将所有频段的EEG信号投影到一个子空间中。在投影子空间中学习共享字典,以便能够有效利用每个频段的特定判别信息,同时保留多个频段之间的共享判别信息。特别是,将Fisher判别准则应用于原子,以最小化类内稀疏重建误差并最大化类间稀疏重建误差。然后,开发了一种交替优化算法来获得投影矩阵和字典的最优解。在两个基于EEG的ER数据集上的实验结果表明,该模型能够取得显著成果并证明其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d1/8274488/9d0c9ae95141/fpsyg-12-705528-g0001.jpg

相似文献

1
Optimized Projection and Fisher Discriminative Dictionary Learning for EEG Emotion Recognition.
Front Psychol. 2021 Jun 28;12:705528. doi: 10.3389/fpsyg.2021.705528. eCollection 2021.
2
Multi-Frequent Band Collaborative EEG Emotion Classification Method Based on Optimal Projection and Shared Dictionary Learning.
Front Aging Neurosci. 2022 Feb 17;14:848511. doi: 10.3389/fnagi.2022.848511. eCollection 2022.
3
Transfer Discriminative Dictionary Pair Learning Approach for Across-Subject EEG Emotion Classification.
Front Psychol. 2022 May 10;13:899983. doi: 10.3389/fpsyg.2022.899983. eCollection 2022.
4
A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification.
Front Psychol. 2021 Jul 29;12:721266. doi: 10.3389/fpsyg.2021.721266. eCollection 2021.
6
Discriminative Fisher Embedding Dictionary Learning Algorithm for Object Recognition.
IEEE Trans Neural Netw Learn Syst. 2020 Mar;31(3):786-800. doi: 10.1109/TNNLS.2019.2910146. Epub 2019 Apr 30.
8
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification.
Comput Intell Neurosci. 2018 Oct 28;2018:9593682. doi: 10.1155/2018/9593682. eCollection 2018.
9
Learning discriminative dictionary for group sparse representation.
IEEE Trans Image Process. 2014 Sep;23(9):3816-28. doi: 10.1109/TIP.2014.2331760. Epub 2014 Jun 18.
10
Label consistent K-SVD: learning a discriminative dictionary for recognition.
IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2651-64. doi: 10.1109/TPAMI.2013.88.

引用本文的文献

2
Transfer Discriminative Dictionary Pair Learning Approach for Across-Subject EEG Emotion Classification.
Front Psychol. 2022 May 10;13:899983. doi: 10.3389/fpsyg.2022.899983. eCollection 2022.
3
Multi-Frequent Band Collaborative EEG Emotion Classification Method Based on Optimal Projection and Shared Dictionary Learning.
Front Aging Neurosci. 2022 Feb 17;14:848511. doi: 10.3389/fnagi.2022.848511. eCollection 2022.
4
Sentiment Classification of News Text Data Using Intelligent Model.
Front Psychol. 2021 Sep 28;12:758967. doi: 10.3389/fpsyg.2021.758967. eCollection 2021.

本文引用的文献

1
An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks.
Front Neurosci. 2020 Sep 30;14:808. doi: 10.3389/fnins.2020.00808. eCollection 2020.
2
3
EEG-Based BCI Emotion Recognition: A Survey.
Sensors (Basel). 2020 Sep 7;20(18):5083. doi: 10.3390/s20185083.
4
A Hierarchical Discriminative Sparse Representation Classifier for EEG Signal Detection.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1679-1687. doi: 10.1109/TCBB.2020.3006699. Epub 2021 Oct 7.
5
Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection.
IEEE Trans Image Process. 2019 Jan;28(1):265-278. doi: 10.1109/TIP.2018.2867198.
6
EmotionMeter: A Multimodal Framework for Recognizing Human Emotions.
IEEE Trans Cybern. 2019 Mar;49(3):1110-1122. doi: 10.1109/TCYB.2018.2797176. Epub 2018 Feb 8.
7
DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless Low-cost Off-the-Shelf Devices.
IEEE J Biomed Health Inform. 2018 Jan;22(1):98-107. doi: 10.1109/JBHI.2017.2688239. Epub 2017 Mar 27.
8
Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls.
Front Neurosci. 2015 Apr 30;9:136. doi: 10.3389/fnins.2015.00136. eCollection 2015.
9
Label consistent K-SVD: learning a discriminative dictionary for recognition.
IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2651-64. doi: 10.1109/TPAMI.2013.88.
10
Multivariate temporal dictionary learning for EEG.
J Neurosci Methods. 2013 Apr 30;215(1):19-28. doi: 10.1016/j.jneumeth.2013.02.001. Epub 2013 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验