Suppr超能文献

用于复杂道路场景中车道检测的几何注意感知网络。

The geometric attention-aware network for lane detection in complex road scenes.

机构信息

College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China.

NullMax (Shanghai) and Co. Ltd, Shanghai, China.

出版信息

PLoS One. 2021 Jul 15;16(7):e0254521. doi: 10.1371/journal.pone.0254521. eCollection 2021.

Abstract

Lane detection in complex road scenes is still a challenging task due to poor lighting conditions, interference of irrelevant road markings or signs, etc. To solve the problem of lane detection in the various complex road scenes, we proposed a geometric attention-aware network (GAAN) for lane detection. The proposed GAAN adopted a multi-task branch architecture, and used the attention information propagation (AIP) module to perform communication between branches, then the geometric attention-aware (GAA) module was used to complete feature fusion. In order to verify the lane detection effect of the proposed model in this paper, the experiments were conducted on the CULane dataset, TuSimple dataset, and BDD100K dataset. The experimental results show that our method performs well compared with the current excellent lane line detection networks.

摘要

由于照明条件差、无关的道路标记或标志干扰等因素,复杂道路场景中的车道检测仍然是一项具有挑战性的任务。为了解决各种复杂道路场景中的车道检测问题,我们提出了一种用于车道检测的几何注意感知网络(GAAN)。所提出的 GAAN 采用了多任务分支架构,并使用注意力信息传播(AIP)模块在分支之间进行通信,然后使用几何注意感知(GAA)模块完成特征融合。为了验证本文所提出模型在车道检测中的效果,在 CULane 数据集、TuSimple 数据集和 BDD100K 数据集上进行了实验。实验结果表明,与当前优秀的车道线检测网络相比,我们的方法表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3262/8282020/cee86f3c6ee0/pone.0254521.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验