Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Rajasthan, India.
Department of Physics and Astronomy, University College London, London, United Kingdom.
Biophys J. 2021 Sep 7;120(17):3807-3819. doi: 10.1016/j.bpj.2021.07.007. Epub 2021 Jul 13.
Hemoglobin-mediated transport of dioxygen (O) critically depends on the stability of the reduced (Fe) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λ 73-96%) makes major contributions to reorganization free energy, whereas protein reorganization (λ) accounts for 27-30% except for the Miyagi and J-Buda variants (λ ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe state. Semiclassical Marcus ET theory-based calculations predict experimental k for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.
血红蛋白介导的氧气(O)运输严重依赖于血红素辅基还原(Fe)形式的稳定性。一些蛋白质突变稳定了氧化(Fe)状态(高铁血红蛋白,Hb M),导致高铁血红蛋白血症,超过 30%时可能致命。影响 Hb 氧化的大多数因素分析都是回顾性的,只能为血红素的内球突变(His58、His87)提供见解。在此,我们报告了首次针对α链 Hb 氧化和还原速率的所有原子分子动力学模拟以及 Hb M 的马库斯电子转移(ET)参数的计算。Hb 野生型(WT)和大多数研究的α链变体除了 Hb M Iwate(H87Y)之外,都保持球蛋白结构。形成 Hb M 的突变体往往具有较低的氧化还原电位,从而稳定氧化(Fe)状态(特别是具有 K61E 突变的 Hb Miyagi 变体)。溶剂重组(λ73-96%)对重组自由能做出了主要贡献,而除 Miyagi 和 J-Buda 变体(λ∼4%)外,蛋白质重组(λ)占 27-30%。对变体之间的血红素-溶剂氢键相互作用的分析提供了对赖氨酸 61 残基在稳定 Fe 状态中的作用的见解。基于半经典马库斯 ET 理论的计算预测了 Cyt b5-Hb 复合物的实验 k,并为 Hb 变体中 Hb M 的相对还原速率提供了见解。因此,我们的方法为突变对结构、稳定性和 Hb 氧化还原速率的影响提供了依据,并有可能识别导致高铁血红蛋白血症的突变。