Suppr超能文献

突变血红蛋白 α 链中的高铁血红蛋白形成:电子转移参数和速率。

Methemoglobin formation in mutant hemoglobin α chains: electron transfer parameters and rates.

机构信息

Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Rajasthan, India.

Department of Physics and Astronomy, University College London, London, United Kingdom.

出版信息

Biophys J. 2021 Sep 7;120(17):3807-3819. doi: 10.1016/j.bpj.2021.07.007. Epub 2021 Jul 13.

Abstract

Hemoglobin-mediated transport of dioxygen (O) critically depends on the stability of the reduced (Fe) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λ 73-96%) makes major contributions to reorganization free energy, whereas protein reorganization (λ) accounts for 27-30% except for the Miyagi and J-Buda variants (λ ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe state. Semiclassical Marcus ET theory-based calculations predict experimental k for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.

摘要

血红蛋白介导的氧气(O)运输严重依赖于血红素辅基还原(Fe)形式的稳定性。一些蛋白质突变稳定了氧化(Fe)状态(高铁血红蛋白,Hb M),导致高铁血红蛋白血症,超过 30%时可能致命。影响 Hb 氧化的大多数因素分析都是回顾性的,只能为血红素的内球突变(His58、His87)提供见解。在此,我们报告了首次针对α链 Hb 氧化和还原速率的所有原子分子动力学模拟以及 Hb M 的马库斯电子转移(ET)参数的计算。Hb 野生型(WT)和大多数研究的α链变体除了 Hb M Iwate(H87Y)之外,都保持球蛋白结构。形成 Hb M 的突变体往往具有较低的氧化还原电位,从而稳定氧化(Fe)状态(特别是具有 K61E 突变的 Hb Miyagi 变体)。溶剂重组(λ73-96%)对重组自由能做出了主要贡献,而除 Miyagi 和 J-Buda 变体(λ∼4%)外,蛋白质重组(λ)占 27-30%。对变体之间的血红素-溶剂氢键相互作用的分析提供了对赖氨酸 61 残基在稳定 Fe 状态中的作用的见解。基于半经典马库斯 ET 理论的计算预测了 Cyt b5-Hb 复合物的实验 k,并为 Hb 变体中 Hb M 的相对还原速率提供了见解。因此,我们的方法为突变对结构、稳定性和 Hb 氧化还原速率的影响提供了依据,并有可能识别导致高铁血红蛋白血症的突变。

相似文献

引用本文的文献

本文引用的文献

3
COVID-19 and sickle cell disease.新型冠状病毒肺炎与镰状细胞病
Haematologica. 2020 Nov 1;105(11):2501-2504. doi: 10.3324/haematol.2020.255398.
7
The emergence of methemoglobinemia amidst the COVID-19 pandemic.新冠疫情期间高铁血红蛋白血症的出现。
Am J Hematol. 2020 Aug;95(8):E196-E197. doi: 10.1002/ajh.25868. Epub 2020 Jun 3.
8
Hemoglobin: Structure, Function and Allostery.血红蛋白:结构、功能与别构效应
Subcell Biochem. 2020;94:345-382. doi: 10.1007/978-3-030-41769-7_14.
10
Spin-Dependent O Binding to Hemoglobin.自旋相关的氧与血红蛋白的结合。
ACS Omega. 2018 Aug 23;3(8):9241-9245. doi: 10.1021/acsomega.8b00879. eCollection 2018 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验