Werner Allison Z, Clare Rita, Mand Thomas D, Pardo Isabel, Ramirez Kelsey J, Haugen Stefan J, Bratti Felicia, Dexter Gara N, Elmore Joshua R, Huenemann Jay D, Peabody George L, Johnson Christopher W, Rorrer Nicholas A, Salvachúa Davinia, Guss Adam M, Beckham Gregg T
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA.
BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Metab Eng. 2021 Sep;67:250-261. doi: 10.1016/j.ymben.2021.07.005. Epub 2021 Jul 12.
Poly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2A3BA1 from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, β-ketoadipic acid (βKA) by deletion of pcaIJ. Using this strain, we demonstrate production of 15.1 g/L βKA from BHET at 76% molar yield in bioreactors and conversion of catalytically depolymerized PET to βKA. Overall, this work highlights the potential of tandem catalytic deconstruction and biological conversion as a means to upcycle waste PET.
聚对苯二甲酸乙二酯(PET)是消耗量最大的合成聚酯,因此也是塑料废物的主要来源。开发将PET解聚为单体的化学催化方法为PET的开环升级回收提供了新选择,这可以利用生物转化生产高价值产品。为此,我们在恶臭假单胞菌KT2440中进行了四项连续的代谢工程改造,以实现PET糖酵解产物的转化,具体如下:(i)通过组成型表达天然基因实现乙二醇利用;(ii)通过表达来自丛毛单胞菌的tphA2A3BA1和来自约氏红球菌的tpaK实现对苯二甲酸(TPA)分解代谢;(iii)通过表达来自日本 Ideonella sakaiensis的PET酶和MHET酶将双(2-羟乙基)对苯二甲酸酯(BHET)水解为TPA;(iv)通过缺失pcaIJ将BHET转化为性能更优的生物产品β-酮己二酸(βKA)。利用该菌株,我们在生物反应器中证明了以76%的摩尔产率从BHET生产15.1 g/L βKA,并将催化解聚的PET转化为βKA。总体而言,这项工作突出了串联催化解构和生物转化作为一种使废PET升级回收的手段的潜力。