Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico; Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
J Mol Biol. 2021 Sep 3;433(18):167153. doi: 10.1016/j.jmb.2021.167153. Epub 2021 Jul 14.
The ability to design stable proteins with custom-made functions is a major goal in biochemistry with practical relevance for our environment and society. Understanding and manipulating protein stability provide crucial information on the molecular determinants that modulate structure and stability, and expand the applications of de novo proteins. Since the (β/⍺)-barrel or TIM-barrel fold is one of the most common functional scaffolds, in this work we designed a collection of stable de novo TIM barrels (DeNovoTIMs), using a computational fixed-backbone and modular approach based on improved hydrophobic packing of sTIM11, the first validated de novo TIM barrel, and subjected them to a thorough folding analysis. DeNovoTIMs navigate a region of the stability landscape previously uncharted by natural TIM barrels, with variations spanning 60 degrees in melting temperature and 22 kcal per mol in conformational stability throughout the designs. Significant non-additive or epistatic effects were observed when stabilizing mutations from different regions of the barrel were combined. The molecular basis of epistasis in DeNovoTIMs appears to be related to the extension of the hydrophobic cores. This study is an important step towards the fine-tuned modulation of protein stability by design.
设计具有定制功能的稳定蛋白质是生物化学的主要目标,与我们的环境和社会具有实际相关性。理解和操纵蛋白质稳定性为调节结构和稳定性的分子决定因素提供了关键信息,并扩展了从头蛋白质的应用。由于(β/α)桶或 TIM 桶折叠是最常见的功能支架之一,因此在这项工作中,我们使用基于改进的 sTIM11 疏水性包装的计算固定骨架和模块化方法设计了一系列稳定的从头 TIM 桶(DeNovoTIMs),sTIM11 是第一个经过验证的从头 TIM 桶,并对它们进行了彻底的折叠分析。DeNovoTIMs 在天然 TIM 桶以前未探索过的稳定性景观区域中进行导航,其设计中的熔融温度变化 60 度,构象稳定性变化 22 kcal/mol。当来自桶不同区域的稳定突变组合时,观察到显著的非加性或上位性效应。DeNovoTIMs 中上位性的分子基础似乎与疏水性核心的扩展有关。这项研究是通过设计对蛋白质稳定性进行微调调制的重要一步。