Franssen Frits F J, Janse Ingmar, Janssen Dennis, Caccio Simone M, Vatta Paolo, van der Giessen Joke W B, van Passel Mark W J
Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment, Bilthoven, Netherlands.
Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Elena Regina, Rome, Italy.
Front Microbiol. 2021 Jun 30;12:622356. doi: 10.3389/fmicb.2021.622356. eCollection 2021.
Parasites often have complex developmental cycles that account for their presence in a variety of difficult-to-analyze matrices, including feces, water, soil, and food. Detection of parasites in these matrices still involves laborious methods. Untargeted sequencing of nucleic acids extracted from those matrices in metagenomic projects may represent an attractive alternative method for unbiased detection of these pathogens. Here, we show how publicly available metagenomic datasets can be mined to detect parasite specific sequences, and generate data useful for environmental surveillance. We use the protozoan parasite as a test organism, and show that detection is influenced by the reference sequence chosen. Indeed, the use of the whole genome yields high sensitivity but low specificity, whereas specificity is improved through the use of signature sequences. In conclusion, querying metagenomic datasets for parasites is feasible and relevant, but requires optimization and validation. Nevertheless, this approach provides access to the large, and rapidly increasing, number of datasets from metagenomic and meta-transcriptomic studies, allowing unlocking hitherto idle signals of parasites in our environments.
寄生虫通常具有复杂的发育周期,这解释了它们为何存在于各种难以分析的基质中,包括粪便、水、土壤和食物。在这些基质中检测寄生虫仍然需要费力的方法。在宏基因组项目中,对从这些基质中提取的核酸进行非靶向测序可能是一种有吸引力的替代方法,用于无偏见地检测这些病原体。在这里,我们展示了如何挖掘公开可用的宏基因组数据集来检测寄生虫特异性序列,并生成对环境监测有用的数据。我们使用原生动物寄生虫作为测试生物体,并表明检测受到所选参考序列的影响。事实上,使用全基因组会产生高灵敏度但低特异性,而通过使用特征序列可以提高特异性。总之,在宏基因组数据集中查询寄生虫是可行且相关的,但需要优化和验证。然而,这种方法可以访问来自宏基因组和元转录组研究的大量且迅速增加的数据集,从而能够解锁我们环境中迄今未被利用的寄生虫信号。