Suppr超能文献

用于预测与烃类不混溶的水交替气增产采收率的快速且经济高效的数学模型

Fast and Cost-Effective Mathematical Models for Hydrocarbon-Immiscible Water Alternating Gas Incremental Recovery Factor Prediction.

作者信息

Belazreg Lazreg, Mahmood Syed Mohammad, Aulia Akmal

机构信息

Department of Geosciences and Petroleum Engineering, University Teknologi PETRONAS, Jalan Desa Seri Iskandar, 32610 Bota, Perak, Malaysia.

Department of Geosciences and Petroleum Engineering, Universiti Teknologi PETRONAS, Jalan Desa Seri Iskandar, 32610 Bota, Perak, Malaysia.

出版信息

ACS Omega. 2021 Jun 30;6(27):17492-17500. doi: 10.1021/acsomega.1c01901. eCollection 2021 Jul 13.

Abstract

Predicting the incremental recovery factor with an enhanced oil recovery (EOR) technique is a very crucial task. It requires a significant investment and expert knowledge to evaluate the EOR incremental recovery factor, design a pilot, and upscale pilot result. Water-alternating-gas (WAG) injection is one of the proven EOR technologies, with an incremental recovery factor typically ranging from 5 to 10%. The current approach of evaluating the WAG process, using reservoir modeling, is a very time-consuming and costly task. The objective of this research is to develop a fast and cost-effective mathematical model for evaluating hydrocarbon-immiscible WAG (HC-IWAG) incremental recovery factor for medium-to-light oil in undersaturated reservoirs, designing WAG pilots, and upscaling pilot results. This integrated research involved WAG literature review, WAG modeling, and selected machine learning techniques. The selected machine learning techniques are stepwise regression and group method of data handling. First, the important parameters for the prediction of the WAG incremental recovery factor were selected. This includes reservoir properties, rock and fluid properties, and WAG injection scheme. Second, an extensive WAG and waterflood modeling was carried out involving more than a thousand reservoir models. Third, WAG incremental recovery factor mathematical predictive models were developed and tested, using the group method of data handling and stepwise regression techniques. HC-IWAG incremental recovery factor mathematical models were developed with a coefficient of determination of about 0.75, using 13 predictors. The developed WAG predictive models are interpretable and user-friendly mathematical formulas. These developed models will help the subsurface teams in a variety of ways. They can be used to identify the best candidates for WAG injection, evaluate and optimize the WAG process, help design successful WAG pilots, and facilitate the upscaling of WAG pilot results to full-field scale. All this can be accomplished in a short time at a low cost and with reasonable accuracy.

摘要

预测采用提高采收率(EOR)技术时的增产采收率是一项非常关键的任务。评估EOR增产采收率、设计先导试验以及将先导试验结果放大都需要大量投资和专业知识。水气交替注入(WAG)是一种经过验证的EOR技术,其增产采收率通常在5%至10%之间。目前使用油藏模拟来评估WAG过程的方法非常耗时且成本高昂。本研究的目的是开发一种快速且经济高效的数学模型,用于评估欠饱和油藏中中轻质油的非混相烃类水气交替注入(HC-IWAG)增产采收率、设计WAG先导试验以及将先导试验结果放大。这项综合研究涉及WAG文献综述、WAG建模以及选定的机器学习技术。选定的机器学习技术是逐步回归和数据处理分组法。首先,选择预测WAG增产采收率的重要参数。这包括油藏特性、岩石和流体特性以及WAG注入方案。其次,进行了广泛的WAG和注水模拟,涉及一千多个油藏模型。第三,使用数据处理分组法和逐步回归技术开发并测试了WAG增产采收率数学预测模型。利用13个预测变量开发了HC-IWAG增产采收率数学模型,其决定系数约为0.75。所开发的WAG预测模型是可解释且用户友好的数学公式。这些开发的模型将在多种方面帮助地下团队。它们可用于识别WAG注入的最佳候选对象、评估和优化WAG过程、帮助设计成功的WAG先导试验以及促进将WAG先导试验结果放大到全油田规模。所有这些都可以在短时间内以低成本且具有合理精度的方式完成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9a4/8280653/25a2c755bbaf/ao1c01901_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验