State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
J Mater Chem B. 2021 Aug 21;9(31):6116-6128. doi: 10.1039/d1tb01124c. Epub 2021 Jul 19.
Since the first report by Yaghi's group in 2005, research enthusiasm has been increasingly raised to synthesize diverse crystalline porous materials as -B-O-, -C-N-, -C-C-, and -C-O- linkage-based COFs. Recently, the biomedical applications of COFs have become more and more attractive in biomedical applications, including drug delivery, bioimaging, biosensing, antimicrobial, and therapeutic applications, as these materials bear well-defined crystalline porous structures and well-customized functionalities. However, the clinical translation of these research findings is challenging due to the formidable hindrances for in vivo use, such as low biocompatibility, poor selectivity, and long bio-persistence. Some attempts have raised a promising solution towards these obstacles by tailored engineering the functionalities of COFs. To speed up the clinical translations of COFs, a short review of principles and strategies to tune the physicochemical properties of COFs is timely and necessary. In this review, we summarized the biomedical utilities of COFs and discussed the related key physicochemical properties. To improve the performances of COFs in biomedical uses, we propose approaches for the tailored functionalization of COFs, including large-scale manufacture, standardization in nanomedicines, enhancing targeting efficacy, maintaining predesigned functions upon transformations, and manipulation of multifunctional COFs. We expect that this minireview strengthens the fundamental understandings of property-bioactivity relationships of COFs and provides insights for the rational design of their high-order reticular structures.
自 2005 年 Yaghi 小组的首次报道以来,人们对合成各种结晶多孔材料的研究热情日益高涨,这些材料的连接键为 -B-O-、-C-N-、-C-C- 和 -C-O-。最近,COFs 在生物医学应用中的应用越来越受到关注,包括药物输送、生物成像、生物传感、抗菌和治疗应用,因为这些材料具有明确的结晶多孔结构和可定制的功能。然而,由于体内应用的巨大障碍,如低生物相容性、差的选择性和长的生物持久性,这些研究结果的临床转化具有挑战性。一些尝试通过定制 COFs 的功能来解决这些障碍,提出了一个有希望的解决方案。为了加快 COFs 的临床转化,及时且有必要对 COFs 的物理化学性质进行调整的原理和策略进行简短的综述。在这篇综述中,我们总结了 COFs 在生物医学中的应用,并讨论了相关的关键物理化学性质。为了提高 COFs 在生物医学中的性能,我们提出了几种方法来对 COFs 进行功能化,包括大规模制造、纳米药物标准化、增强靶向效果、在转化过程中保持预定功能以及操纵多功能 COFs。我们期望这篇综述能够加强对 COFs 性质-生物活性关系的基本理解,并为其高阶网状结构的合理设计提供思路。