Suppr超能文献

任务诱导金字塔和注意力生成对抗网络在阿尔茨海默病的多模态脑影像插补和分类中的应用。

Task-Induced Pyramid and Attention GAN for Multimodal Brain Image Imputation and Classification in Alzheimer's Disease.

出版信息

IEEE J Biomed Health Inform. 2022 Jan;26(1):36-43. doi: 10.1109/JBHI.2021.3097721. Epub 2022 Jan 17.

Abstract

With the advance of medical imaging technologies, multimodal images such as magnetic resonance images (MRI) and positron emission tomography (PET) can capture subtle structural and functional changes of brain, facilitating the diagnosis of brain diseases such as Alzheimer's disease (AD). In practice, multimodal images may be incomplete since PET is often missing due to high financial costs or availability. Most of the existing methods simply excluded subjects with missing data, which unfortunately reduced the sample size. In addition, how to extract and combine multimodal features is still challenging. To address these problems, we propose a deep learning framework to integrate a task-induced pyramid and attention generative adversarial network (TPA-GAN) with a pathwise transfer dense convolution network (PT-DCN) for imputation and classification of multimodal brain images. First, we propose a TPA-GAN to integrate pyramid convolution and attention module as well as disease classification task into GAN for generating the missing PET data with their MRI. Then, with the imputed multimodal images, we build a dense convolution network with pathwise transfer blocks to gradually learn and combine multimodal features for final disease classification. Experiments are performed on ADNI-1/2 datasets to evaluate our method, achieving superior performance in image imputation and brain disease diagnosis compared to state-of-the-art methods.

摘要

随着医学成像技术的进步,磁共振成像(MRI)和正电子发射断层扫描(PET)等多模态图像可以捕捉大脑的细微结构和功能变化,有助于诊断阿尔茨海默病(AD)等脑部疾病。在实践中,由于成本高或可用性有限,多模态图像可能不完整,通常会缺少 PET。现有的大多数方法只是简单地排除了缺失数据的对象,这不幸地减少了样本量。此外,如何提取和组合多模态特征仍然具有挑战性。为了解决这些问题,我们提出了一种深度学习框架,将任务诱导金字塔和注意力生成对抗网络(TPA-GAN)与路径转移密集卷积网络(PT-DCN)集成在一起,用于多模态脑图像的插补和分类。首先,我们提出了一种 TPA-GAN,将金字塔卷积和注意力模块以及疾病分类任务集成到 GAN 中,用于生成缺失的 PET 数据及其 MRI。然后,利用插补后的多模态图像,我们构建了一个具有路径转移块的密集卷积网络,以逐步学习和组合多模态特征,最终进行疾病分类。我们在 ADNI-1/2 数据集上进行了实验,评估了我们的方法,与最先进的方法相比,在图像插补和脑部疾病诊断方面取得了优异的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验