Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
J Am Chem Soc. 2021 Jul 28;143(29):11262-11270. doi: 10.1021/jacs.1c05856. Epub 2021 Jul 19.
Lattice engineering on specific facets of metal catalysts is critically important not only for the enhancement of their catalytic performance but also for deeply understanding the effect of facet-based lattice engineering on catalytic reactions. Here, we develop a facile two-step method for the lattice expansion on specific facets, i.e., Pt(100) and Pt(111), of Pt catalysts. We first prepare the Pd@Pt core-shell nanoparticles exposed with the Pt(100) and Pt(111) facets, respectively, via the Pd-seeded epitaxial growth, and then convert the Pd core to PdH by hydrogen intercalation. The lattice expansion of the Pd core induces the lattice enlargement of the Pt shell, which can significantly promote the alcohol oxidation reaction (AOR) on both Pt(100) and Pt(111) facets. Impressively, Pt mass specific activities of 32.51 A mg for methanol oxidation and 14.86 A mg for ethanol oxidation, which are 41.15 and 25.19 times those of the commercial Pt/C catalyst, respectively, have been achieved on the Pt(111) facet. Density functional theory (DFT) calculations indicate that the remarkably improved catalytic performance on both the Pt(100) and the Pt(111) facets through lattice expansion arises from the enhanced OH adsorption. This work not only paves the way for lattice engineering on specific facets of nanomaterials to enhance their electrocatalytic activity but also offers a promising strategy toward the rational design and preparation of highly efficient catalysts.
晶格工程在金属催化剂的特定晶面上至关重要,不仅可以提高其催化性能,还可以深入了解基于晶面的晶格工程对催化反应的影响。在这里,我们开发了一种简便的两步法,用于扩展 Pt 催化剂的特定晶面(即 Pt(100)和 Pt(111))的晶格。我们首先通过 Pd 种子外延生长制备了暴露在 Pt(100)和 Pt(111)晶面上的 Pd@Pt 核壳纳米粒子,然后通过氢嵌入将 Pd 核转化为 PdH。Pd 核的晶格膨胀诱导了 Pt 壳的晶格膨胀,这可以显著促进在 Pt(100)和 Pt(111)晶面上的醇氧化反应 (AOR)。令人印象深刻的是,在 Pt(111)晶面上,甲醇氧化的 Pt 质量比活性达到 32.51 A mg,乙醇氧化的 Pt 质量比活性达到 14.86 A mg,分别是商业 Pt/C 催化剂的 41.15 和 25.19 倍。密度泛函理论 (DFT) 计算表明,通过晶格扩展在 Pt(100)和 Pt(111)晶面上显著提高的催化性能源于增强的 OH 吸附。这项工作不仅为纳米材料特定晶面的晶格工程提供了一种提高其电催化活性的方法,也为高效催化剂的合理设计和制备提供了一种有前途的策略。