Suppr超能文献

自主研发的基于全残差深度卷积神经网络的男性盆腔 CT 分割软件的开发。

Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT.

机构信息

Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.

Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.

出版信息

Radiat Oncol. 2021 Jul 22;16(1):135. doi: 10.1186/s13014-021-01867-6.

Abstract

BACKGROUND

This study aimed to (1) develop a fully residual deep convolutional neural network (CNN)-based segmentation software for computed tomography image segmentation of the male pelvic region and (2) demonstrate its efficiency in the male pelvic region.

METHODS

A total of 470 prostate cancer patients who had undergone intensity-modulated radiotherapy or volumetric-modulated arc therapy were enrolled. Our model was based on FusionNet, a fully residual deep CNN developed to semantically segment biological images. To develop the CNN-based segmentation software, 450 patients were randomly selected and separated into the training, validation and testing groups (270, 90, and 90 patients, respectively). In Experiment 1, to determine the optimal model, we first assessed the segmentation accuracy according to the size of the training dataset (90, 180, and 270 patients). In Experiment 2, the effect of varying the number of training labels on segmentation accuracy was evaluated. After determining the optimal model, in Experiment 3, the developed software was used on the remaining 20 datasets to assess the segmentation accuracy. The volumetric dice similarity coefficient (DSC) and the 95th-percentile Hausdorff distance (95%HD) were calculated to evaluate the segmentation accuracy for each organ in Experiment 3.

RESULTS

In Experiment 1, the median DSC for the prostate were 0.61 for dataset 1 (90 patients), 0.86 for dataset 2 (180 patients), and 0.86 for dataset 3 (270 patients), respectively. The median DSCs for all the organs increased significantly when the number of training cases increased from 90 to 180 but did not improve upon further increase from 180 to 270. The number of labels applied during training had a little effect on the DSCs in Experiment 2. The optimal model was built by 270 patients and four organs. In Experiment 3, the median of the DSC and the 95%HD values were 0.82 and 3.23 mm for prostate; 0.71 and 3.82 mm for seminal vesicles; 0.89 and 2.65 mm for the rectum; 0.95 and 4.18 mm for the bladder, respectively.

CONCLUSIONS

We have developed a CNN-based segmentation software for the male pelvic region and demonstrated that the CNN-based segmentation software is efficient for the male pelvic region.

摘要

背景

本研究旨在(1)开发一种完全残差的深度学习卷积神经网络(CNN)为基础的分割软件,用于男性骨盆区的计算机断层扫描图像分割;(2)证明其在男性骨盆区的效率。

方法

共纳入 470 例接受调强放疗或容积调强弧形治疗的前列腺癌患者。我们的模型基于 FusionNet,这是一种完全残差的深度学习 CNN,用于语义分割生物图像。为了开发基于 CNN 的分割软件,我们随机选择了 450 例患者,并将其分为训练组、验证组和测试组(分别为 270、90 和 90 例患者)。在实验 1 中,为了确定最佳模型,我们首先根据训练数据集的大小评估分割准确性(90、180 和 270 例患者)。在实验 2 中,评估了训练标签数量对分割准确性的影响。在确定最佳模型后,在实验 3 中,我们在其余 20 个数据集上使用开发的软件评估分割准确性。在实验 3 中,计算每个器官的体积 Dice 相似系数(DSC)和 95%Hausdorff 距离(95%HD)来评估分割准确性。

结果

在实验 1 中,数据集 1(90 例患者)的前列腺中位 DSC 为 0.61,数据集 2(180 例患者)为 0.86,数据集 3(270 例患者)为 0.86。当训练病例数从 90 例增加到 180 例时,所有器官的中位 DSC 显著增加,但从 180 例增加到 270 例时没有进一步提高。实验 2 中,训练中应用的标签数量对 DSC 的影响很小。通过 270 例患者和 4 个器官构建了最佳模型。在实验 3 中,前列腺的中位 DSC 和 95%HD 值分别为 0.82 和 3.23mm;精囊的为 0.71 和 3.82mm;直肠的为 0.89 和 2.65mm;膀胱的为 0.95 和 4.18mm。

结论

我们已经开发了一种基于男性骨盆区 CNN 的分割软件,并证明了该软件在男性骨盆区的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d306/8299691/e850ff9f8e94/13014_2021_1867_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验