Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
J Am Chem Soc. 2021 Aug 4;143(30):11751-11758. doi: 10.1021/jacs.1c05376. Epub 2021 Jul 23.
Fast ion-chelate dissociation rates and weak ion-chelate affinities are desired kinetic and thermodynamic features for imaging probes to allow reversible binding and to prevent deviation from basal ionic levels. Nevertheless, such properties often result in poor readouts upon ion binding, frequently result in low ion specificity, and do not allow the detection of a wide range of concentrations. Herein, we show the design, synthesis, characterization, and implementation of a Zn-probe developed for MRI that possesses reversible Zn-binding properties with a rapid dissociation rate ( = 845 ± 35 s) for the detection of a wide range of biologically relevant concentrations. Benefiting from the implementation of chemical exchange saturation transfer (CEST), which is here applied in the F-MRI framework in an approach termed ion CEST (iCEST), we demonstrate the ability to map labile Zn with spectrally resolved specificity and with no interference from competitive cations. Relying on fast rates for enhanced signal amplification, the use of iCEST allowed the designed fluorinated chelate to experience weak Zn-binding affinity ( at the mM range), but without compromising high cationic specificity, which is demonstrated here for mapping the distribution of labile Zn in the hippocampal tissue of a live mouse. This strategy for accelerating ion-chelate rates for the enhancement of MRI signal amplifications without affecting ion specificity could open new avenues for the design of additional probes for other metal ions beyond zinc.
快速的离子-螯合物离解速率和较弱的离子-螯合物亲和力是成像探针所需的动力学和热力学特征,以允许可逆结合并防止偏离基础离子水平。然而,这些性质通常会导致离子结合时的读出效果不佳,经常导致离子特异性差,并且无法检测到广泛的浓度范围。在此,我们展示了一种用于 MRI 的 Zn 探针的设计、合成、表征和实施,该探针具有可逆的 Zn 结合特性,离解速率快( = 845 ± 35 s),可用于检测广泛的生物相关浓度。得益于化学交换饱和转移(CEST)的实施,我们在一种称为离子 CEST(iCEST)的方法中在 F-MRI 框架中应用了 CEST,证明了具有光谱分辨特异性和无竞争性阳离子干扰的检测不稳定 Zn 的能力。依赖于快速的 速率来增强信号放大,iCEST 的使用允许设计的氟化螯合物具有较弱的 Zn 结合亲和力(在 mM 范围内),但不会影响高阳离子特异性,这在活体小鼠海马组织中对不稳定 Zn 分布的映射中得到了证明。这种用于加速离子-螯合物 速率以增强 MRI 信号放大而不影响离子特异性的策略可能为设计其他金属离子(不仅仅是锌)的探针开辟新途径。