Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
Angew Chem Int Ed Engl. 2021 Oct 18;60(43):23241-23247. doi: 10.1002/anie.202107829. Epub 2021 Aug 24.
Combining surface-initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI-TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush-functionalized DNA nanostructures. We demonstrate that SI-TcEP can site-specifically pattern DONs with brushes containing both natural and non-natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse-grained simulations predict the conformation of the brush-functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush-functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site-specific growth of polynucleotide brushes. The ability to site-specifically decorate DONs with brushes of natural and non-natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.
将表面引发的、末端脱氧核苷酸转移酶(TdT)催化的酶促聚合(SI-TcEP)与经过精确设计的 DNA 折纸纳米结构(DONs)相结合,为生成稳定的、多核苷酸刷功能化 DNA 纳米结构提供了一种创新途径。我们证明 SI-TcEP 可以在 DONs 上进行位点特异性图案化,形成包含天然和非天然核苷酸的刷。刷的功能化可以根据折纸核心上的起始位点的位置以及刷的高度和组成来精确控制。粗粒度模拟预测了刷功能化 DONs 的构象,与实验观察到的形态非常吻合。我们发现多核苷酸刷功能化显著提高了 DONs 的抗核酸酶能力,并且这种稳定性可以通过多核苷酸刷的位点特异性生长来进行空间编程。用天然和非天然核苷酸的刷特异性修饰 DONs 的能力为功能化 DON 结构提供了广泛的途径,这将允许进一步的超分子组装,并为智能纳米级给药系统的潜在应用提供了可能。