IEEE Trans Med Imaging. 2021 Dec;40(12):3867-3878. doi: 10.1109/TMI.2021.3099509. Epub 2021 Nov 30.
Automatic craniomaxillofacial (CMF) landmark localization from cone-beam computed tomography (CBCT) images is challenging, considering that 1) the number of landmarks in the images may change due to varying deformities and traumatic defects, and 2) the CBCT images used in clinical practice are typically large. In this paper, we propose a two-stage, coarse-to-fine deep learning method to tackle these challenges with both speed and accuracy in mind. Specifically, we first use a 3D faster R-CNN to roughly locate landmarks in down-sampled CBCT images that have varying numbers of landmarks. By converting the landmark point detection problem to a generic object detection problem, our 3D faster R-CNN is formulated to detect virtual, fixed-size objects in small boxes with centers indicating the approximate locations of the landmarks. Based on the rough landmark locations, we then crop 3D patches from the high-resolution images and send them to a multi-scale UNet for the regression of heatmaps, from which the refined landmark locations are finally derived. We evaluated the proposed approach by detecting up to 18 landmarks on a real clinical dataset of CMF CBCT images with various conditions. Experiments show that our approach achieves state-of-the-art accuracy of 0.89 ± 0.64mm in an average time of 26.2 seconds per volume.
从锥形束 CT(CBCT)图像中自动定位颅面(CMF)标志点具有挑战性,原因如下:1)由于不断变化的畸形和创伤性缺陷,图像中的标志点数可能会发生变化;2)临床实践中使用的 CBCT 图像通常较大。在本文中,我们提出了一种两阶段的粗到精深度学习方法,旨在在速度和准确性方面解决这些挑战。具体来说,我们首先使用 3D 更快的 R-CNN 在具有不同标志点数的降采样 CBCT 图像中粗略定位标志点。通过将标志点检测问题转换为通用的物体检测问题,我们的 3D 更快的 R-CNN 被设计用来在小盒子中检测虚拟的、固定大小的物体,这些小盒子的中心表示标志点的大致位置。基于粗略的标志点位置,我们从高分辨率图像中裁剪出 3D 补丁,并将其发送到多尺度 UNet 进行热图回归,最终从热图回归中得出精确定位的标志点位置。我们在具有各种条件的真实临床 CMF CBCT 图像数据集上检测多达 18 个标志点,评估了所提出的方法。实验表明,我们的方法在平均每个体积 26.2 秒的时间内达到了 0.89±0.64mm 的最新精度。