Suppr超能文献

一种基于贝叶斯非参数方法的快速稳健的统计量预测复杂性状的方法。

A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics.

机构信息

Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America.

Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America.

出版信息

PLoS Genet. 2021 Jul 26;17(7):e1009697. doi: 10.1371/journal.pgen.1009697. eCollection 2021 Jul.

Abstract

Genetic prediction of complex traits has great promise for disease prevention, monitoring, and treatment. The development of accurate risk prediction models is hindered by the wide diversity of genetic architecture across different traits, limited access to individual level data for training and parameter tuning, and the demand for computational resources. To overcome the limitations of the most existing methods that make explicit assumptions on the underlying genetic architecture and need a separate validation data set for parameter tuning, we develop a summary statistics-based nonparametric method that does not rely on validation datasets to tune parameters. In our implementation, we refine the commonly used likelihood assumption to deal with the discrepancy between summary statistics and external reference panel. We also leverage the block structure of the reference linkage disequilibrium matrix for implementation of a parallel algorithm. Through simulations and applications to twelve traits, we show that our method is adaptive to different genetic architectures, statistically robust, and computationally efficient. Our method is available at https://github.com/eldronzhou/SDPR.

摘要

遗传预测复杂性状对于疾病预防、监测和治疗具有巨大的应用前景。然而,由于不同性状的遗传结构存在广泛的多样性、用于训练和参数调整的个体水平数据有限以及对计算资源的需求等原因,准确的风险预测模型的开发受到了阻碍。为了克服现有最先进方法的局限性,这些方法对潜在的遗传结构做出了明确的假设,并且需要单独的验证数据集来进行参数调整,我们开发了一种基于汇总统计数据的非参数方法,该方法不依赖验证数据集来调整参数。在我们的实现中,我们改进了常用的似然假设,以解决汇总统计数据和外部参考面板之间的差异。我们还利用参考连锁不平衡矩阵的块结构来实现并行算法。通过模拟和对 12 个特征的应用,我们表明我们的方法能够适应不同的遗传结构,具有统计稳健性和计算效率。我们的方法可以在 https://github.com/eldronzhou/SDPR 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/277d/8341714/aaa892312e00/pgen.1009697.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验