Suppr超能文献

过度的外膜张力导致高血压性主动脉重构中炎症介导的纤维化。

Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands.

出版信息

J R Soc Interface. 2021 Jul;18(180):20210336. doi: 10.1098/rsif.2021.0336. Epub 2021 Jul 28.

Abstract

Hypertension induces significant aortic remodelling, often adaptive but sometimes not. To identify immuno-mechanical mechanisms responsible for differential remodelling, we studied thoracic aortas from 129S6/SvEvTac and C57BL/6 J mice before and after continuous 14-day angiotensin II infusion, which elevated blood pressure similarly in both strains. Histological and biomechanical assessments of excised vessels were similar at baseline, suggesting a common homeostatic set-point for mean wall stress. Histology further revealed near mechano-adaptive remodelling of the hypertensive 129S6/SvEvTac aortas, but a grossly maladaptive remodelling of C57BL/6 J aortas. Bulk RNA sequencing suggested that increased smooth muscle contractile processes promoted mechano-adaptation of 129S6/SvEvTac aortas while immune processes prevented adaptation of C57BL/6 J aortas. Functional studies confirmed an increased vasoconstrictive capacity of the former while immunohistochemistry demonstrated marked increases in inflammatory cells in the latter. We then used multiple computational biomechanical models to test the hypothesis that excessive adventitial wall stress correlates with inflammatory cell infiltration. These models consistently predicted that increased vasoconstriction against an increased pressure coupled with modest deposition of new matrix thickens the wall appropriately, restoring wall stress towards homeostatic consistent with adaptive remodelling. By contrast, insufficient vasoconstriction permits high wall stresses and exuberant inflammation-driven matrix deposition, especially in the adventitia, reflecting compromised homeostasis and gross maladaptation.

摘要

高血压会引起显著的主动脉重塑,这种重塑通常是适应性的,但有时也不是。为了确定导致不同重塑的免疫机械机制,我们在连续 14 天给予血管紧张素 II 输注前后,研究了 129S6/SvEvTac 和 C57BL/6 J 小鼠的胸主动脉,两种品系的血压升高相似。在基线时,切除血管的组织学和生物力学评估相似,表明平均壁应力存在共同的稳态设定点。组织学进一步显示,高血压 129S6/SvEvTac 主动脉的重塑接近力学适应性,但 C57BL/6 J 主动脉的重塑则严重失调。批量 RNA 测序表明,增加平滑肌收缩过程促进了 129S6/SvEvTac 主动脉的力学适应性,而免疫过程则阻止了 C57BL/6 J 主动脉的适应性。功能研究证实了前者的血管收缩能力增加,而免疫组织化学则显示后者的炎症细胞明显增加。然后,我们使用多个计算生物力学模型来检验这样一个假设,即外膜壁应力的增加与炎症细胞的浸润有关。这些模型一致预测,增加的血管收缩对抗增加的压力,加上适度的新基质沉积,会使壁适当增厚,使壁应力恢复到与适应性重塑一致的稳态。相比之下,血管收缩不足会导致高壁应力和过度的炎症驱动基质沉积,尤其是在外膜,反映了稳态失调和严重失调。

相似文献

1
Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice.
J R Soc Interface. 2021 Jul;18(180):20210336. doi: 10.1098/rsif.2021.0336. Epub 2021 Jul 28.
2
Maladaptive aortic remodeling in hypertension associates with dysfunctional smooth muscle contractility.
Am J Physiol Heart Circ Physiol. 2019 Feb 1;316(2):H265-H278. doi: 10.1152/ajpheart.00503.2017. Epub 2018 Nov 9.
4
Drebrin regulates angiotensin II-induced aortic remodelling.
Cardiovasc Res. 2018 Nov 1;114(13):1806-1815. doi: 10.1093/cvr/cvy151.
5
TGF-β (Transforming Growth Factor-β) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms.
Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2102-2113. doi: 10.1161/ATVBAHA.117.309401. Epub 2017 Jul 20.
6
Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension.
Hypertension. 2016 May;67(5):890-896. doi: 10.1161/HYPERTENSIONAHA.115.06262. Epub 2016 Mar 21.
8
Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.
Hypertension. 2016 Feb;67(2):461-8. doi: 10.1161/HYPERTENSIONAHA.115.06123. Epub 2015 Dec 22.
9

引用本文的文献

2
Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension.
Ann Biomed Eng. 2025 Apr;53(4):1014-1023. doi: 10.1007/s10439-025-03685-3. Epub 2025 Feb 4.
3
Mechanisms of aortic dissection: From pathological changes to experimental and models.
Prog Mater Sci. 2025 Apr;150. doi: 10.1016/j.pmatsci.2024.101363. Epub 2024 Sep 12.
4
AT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice.
J R Soc Interface. 2024 Aug;21(217):20240110. doi: 10.1098/rsif.2024.0110. Epub 2024 Aug 28.
5
Instability in Computational Models of Vascular Smooth Muscle Cell Contraction.
Ann Biomed Eng. 2024 Sep;52(9):2403-2416. doi: 10.1007/s10439-024-03532-x. Epub 2024 Jun 29.
6
Multiscale computational model of aortic remodeling following postnatal disruption of TGFβ signaling.
J Biomech. 2024 May;169:112152. doi: 10.1016/j.jbiomech.2024.112152. Epub 2024 May 15.
7
Tempol improves aortic mechanics in a mouse model of hypertension.
J Biomech. 2024 Jan;162:111911. doi: 10.1016/j.jbiomech.2023.111911. Epub 2023 Dec 17.
8
A computational growth and remodeling framework for adaptive and maladaptive pulmonary arterial hemodynamics.
Biomech Model Mechanobiol. 2023 Dec;22(6):1935-1951. doi: 10.1007/s10237-023-01744-z. Epub 2023 Sep 2.
10
Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence.
Arterioscler Thromb Vasc Biol. 2023 Sep;43(9):1599-1616. doi: 10.1161/ATVBAHA.123.318237. Epub 2023 Jul 6.

本文引用的文献

1
Differential biomechanical responses of elastic and muscular arteries to angiotensin II-induced hypertension.
J Biomech. 2021 Apr 15;119:110297. doi: 10.1016/j.jbiomech.2021.110297. Epub 2021 Feb 13.
2
Mechanisms of Vascular Remodeling in Hypertension.
Am J Hypertens. 2021 May 22;34(5):432-441. doi: 10.1093/ajh/hpaa195.
3
Aortic remodeling is modest and sex-independent in mice when hypertension is superimposed on aging.
J Hypertens. 2020 Jul;38(7):1312-1321. doi: 10.1097/HJH.0000000000002400.
4
Animal Models of Hypertension: A Scientific Statement From the American Heart Association.
Hypertension. 2019 Jun;73(6):e87-e120. doi: 10.1161/HYP.0000000000000090.
5
Maladaptive aortic remodeling in hypertension associates with dysfunctional smooth muscle contractility.
Am J Physiol Heart Circ Physiol. 2019 Feb 1;316(2):H265-H278. doi: 10.1152/ajpheart.00503.2017. Epub 2018 Nov 9.
7
Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension.
Hypertension. 2016 May;67(5):890-896. doi: 10.1161/HYPERTENSIONAHA.115.06262. Epub 2016 Mar 21.
8
M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure.
Am J Physiol Heart Circ Physiol. 2015 Sep;309(5):H906-17. doi: 10.1152/ajpheart.00821.2014. Epub 2015 Jun 12.
9
The structural factor of hypertension: large and small artery alterations.
Circ Res. 2015 Mar 13;116(6):1007-21. doi: 10.1161/CIRCRESAHA.116.303596.
10
Myh11(R247C/R247C) mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity.
J Biomech. 2015 Jan 2;48(1):113-21. doi: 10.1016/j.jbiomech.2014.10.031. Epub 2014 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验