Suppr超能文献

加拿大多伦多:基于社会经济决定因素和地理位置的 COVID-19 浓度升高的观察性研究。

Increasing concentration of COVID-19 by socioeconomic determinants and geography in Toronto, Canada: an observational study.

机构信息

St. Michael's Hospital, Unity Health Toronto, Toronto, Canada; Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada.

St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.

出版信息

Ann Epidemiol. 2022 Jan;65:84-92. doi: 10.1016/j.annepidem.2021.07.007. Epub 2021 Jul 25.

Abstract

BACKGROUND

Inequities in the burden of COVID-19 were observed early in Canada and around the world, suggesting economically marginalized communities faced disproportionate risks. However, there has been limited systematic assessment of how heterogeneity in risks has evolved in large urban centers over time.

PURPOSE

To address this gap, we quantified the magnitude of risk heterogeneity in Toronto, Ontario from January to November 2020 using a retrospective, population-based observational study using surveillance data.

METHODS

We generated epidemic curves by social determinants of health (SDOH) and crude Lorenz curves by neighbourhoods to visualize inequities in the distribution of COVID-19 and estimated Gini coefficients. We examined the correlation between SDOH using Pearson-correlation coefficients.

RESULTS

Gini coefficient of cumulative cases by population size was 0.41 (95% confidence interval [CI]:0.36-0.47) and estimated for: household income (0.20, 95%CI: 0.14-0.28); visible minority (0.21, 95%CI:0.16-0.28); recent immigration (0.12, 95%CI:0.09-0.16); suitable housing (0.21, 95%CI:0.14-0.30); multigenerational households (0.19, 95%CI:0.15-0.23); and essential workers (0.28, 95%CI:0.23-0.34).

CONCLUSIONS

There was rapid epidemiologic transition from higher- to lower-income neighborhoods with Lorenz curve transitioning from below to above the line of equality across SDOH. Moving forward necessitates integrating programs and policies addressing socioeconomic inequities and structural racism into COVID-19 prevention and vaccination programs.

摘要

背景

COVID-19 的负担在加拿大和世界各地早期出现了不平等现象,这表明经济边缘化社区面临不成比例的风险。然而,对于大型城市中心的风险异质性如何随时间演变,一直缺乏系统的评估。

目的

为了解决这一差距,我们使用基于监测数据的回顾性人群观察研究,量化了 2020 年 1 月至 11 月安大略省多伦多的风险异质性程度。

方法

我们通过健康的社会决定因素(SDOH)生成流行曲线,并通过社区生成粗略的洛伦兹曲线,以可视化 COVID-19 的分布不均,并估计基尼系数。我们使用皮尔逊相关系数检查了 SDOH 之间的相关性。

结果

按人口规模计算的累计病例基尼系数为 0.41(95%置信区间[CI]:0.36-0.47),估计值为:家庭收入(0.20,95%CI:0.14-0.28);少数族裔(0.21,95%CI:0.16-0.28);最近移民(0.12,95%CI:0.09-0.16);合适住房(0.21,95%CI:0.14-0.30);多代家庭(0.19,95%CI:0.15-0.23);和基本工人(0.28,95%CI:0.23-0.34)。

结论

从高收入社区到低收入社区的流行病学迅速转变,洛伦兹曲线从 SDOH 线以下过渡到以上。展望未来,需要将解决社会经济不平等和结构性种族主义的计划和政策纳入 COVID-19 预防和疫苗接种计划中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8c8/8730782/d4ba5067b602/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验