Suppr超能文献

观察表面配体控制的钯纳米晶体刻蚀。

Observation of Surface Ligands-Controlled Etching of Palladium Nanocrystals.

机构信息

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

School of Materials Science and Engineering, Southeast University, Nanjing 211189, P.R. China.

出版信息

Nano Lett. 2021 Aug 11;21(15):6640-6647. doi: 10.1021/acs.nanolett.1c02104. Epub 2021 Jul 29.

Abstract

Selective adsorption of ligands on nanocrystal surfaces can affect oxidative etching. Here, we report the etching of palladium nanocrystals imaged using liquid cell transmission electron microscopy. The adsorption of surface ligands (i.e., iron acetylacetonate and its derivatives) and their role as inhibitor molecules on the etching process were investigated. Our observations revealed that the etching was dominated by the interplay between palladium facets and ligands and that the etching exhibited different pathways at different concentrations of ligands. At a low concentration of iron acetylacetonate (0.1 mM), rapid etching primarily at {100} facets led to a concave structure. At a high concentration (1.0 mM), the etch rate was decreased owing to a protective film of iron acetylacetonate on the {100} facets and a round nanoparticle was achieved. Ab initio calculations showed that the differences in adsorption energy of inhibitor molecules on palladium facets were responsible for the etching behavior.

摘要

纳米晶体表面配体的选择吸附会影响氧化刻蚀。在这里,我们报告了使用液体电池透射电子显微镜成像的钯纳米晶体的刻蚀。研究了表面配体(即乙酰丙酮铁及其衍生物)的吸附及其作为抑制剂分子在刻蚀过程中的作用。我们的观察结果表明,刻蚀主要由钯晶面和配体之间的相互作用以及配体浓度不同时的不同刻蚀途径决定。在低浓度的乙酰丙酮铁(0.1mM)下,主要在{100}晶面的快速刻蚀导致了凹形结构。在高浓度(1.0mM)下,由于在{100}晶面上形成了乙酰丙酮铁的保护膜,刻蚀速率降低,从而得到了一个圆形的纳米颗粒。从头算计算表明,抑制剂分子在钯晶面上的吸附能差异是导致刻蚀行为的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验