Suppr超能文献

深度学习在低剂量计算机断层扫描剂量优化中的应用:一项范围综述。

The use of deep learning towards dose optimization in low-dose computed tomography: A scoping review.

作者信息

Immonen E, Wong J, Nieminen M, Kekkonen L, Roine S, Törnroos S, Lanca L, Guan F, Metsälä E

机构信息

Metropolia University of Applied Sciences, Finland.

Singapore Institute of Technology (SIT), Singapore.

出版信息

Radiography (Lond). 2022 Feb;28(1):208-214. doi: 10.1016/j.radi.2021.07.010. Epub 2021 Jul 27.

Abstract

INTRODUCTION

Low-dose computed tomography tends to produce lower image quality than normal dose computed tomography (CT) although it can help to reduce radiation hazards of CT scanning. Research has shown that Artificial Intelligence (AI) technologies, especially deep learning can help enhance the image quality of low-dose CT by denoising images. This scoping review aims to create an overview on how AI technologies, especially deep learning, can be used in dose optimisation for low-dose CT.

METHODS

Literature searches of ProQuest, PubMed, Cinahl, ScienceDirect, EbscoHost Ebook Collection and Ovid were carried out to find research articles published between the years 2015 and 2020. In addition, manual search was conducted in SweMed+, SwePub, NORA, Taylor & Francis Online and Medic.

RESULTS

Following a systematic search process, the review comprised of 16 articles. Articles were organised according to the effects of the deep learning networks, e.g. image noise reduction, image restoration. Deep learning can be used in multiple ways to facilitate dose optimisation in low-dose CT. Most articles discuss image noise reduction in low-dose CT.

CONCLUSION

Deep learning can be used in the optimisation of patients' radiation dose. Nevertheless, the image quality is normally lower in low-dose CT (LDCT) than in regular-dose CT scans because of smaller radiation doses. With the help of deep learning, the image quality can be improved to equate the regular-dose computed tomography image quality.

IMPLICATIONS TO PRACTICE

Lower dose may decrease patients' radiation risk but may affect the image quality of CT scans. Artificial intelligence technologies can be used to improve image quality in low-dose CT scans. Radiologists and radiographers should have proper education and knowledge about the techniques used.

摘要

引言

低剂量计算机断层扫描虽然有助于降低CT扫描的辐射危害,但往往比常规剂量计算机断层扫描(CT)产生的图像质量更低。研究表明,人工智能(AI)技术,尤其是深度学习,可以通过图像去噪帮助提高低剂量CT的图像质量。本综述旨在概述人工智能技术,尤其是深度学习,如何用于低剂量CT的剂量优化。

方法

对ProQuest、PubMed、Cinahl、ScienceDirect、EbscoHost电子书库和Ovid进行文献检索,以查找2015年至2020年间发表的研究文章。此外,还在SweMed+、SwePub、NORA、Taylor&Francis Online和Medic中进行了手动检索。

结果

经过系统的检索过程,该综述纳入了16篇文章。文章根据深度学习网络的效果进行组织,如图像降噪、图像恢复。深度学习可以通过多种方式用于促进低剂量CT的剂量优化。大多数文章讨论了低剂量CT中的图像降噪。

结论

深度学习可用于优化患者的辐射剂量。然而,由于辐射剂量较小,低剂量CT(LDCT)的图像质量通常低于常规剂量CT扫描。在深度学习的帮助下,图像质量可以得到改善,以等同于常规剂量计算机断层扫描的图像质量。

对实践的启示

较低剂量可能会降低患者的辐射风险,但可能会影响CT扫描的图像质量。人工智能技术可用于提高低剂量CT扫描的图像质量。放射科医生和放射技师应接受有关所用技术的适当教育并具备相关知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验