Suppr超能文献

3D 混合纳米纤维气凝胶与由可生物裂解且具有靶向性的聚阳离子和 miR-26a 制成的纳米颗粒相结合用于骨修复。

3D Hybrid Nanofiber Aerogels Combining with Nanoparticles Made of a Biocleavable and Targeting Polycation and MiR-26a for Bone Repair.

作者信息

Li Ruiquan, Wang Hongjun, John Johnson V, Song Haiqing, Teusink Matthew J, Xie Jingwei

机构信息

Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States.

Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States.

出版信息

Adv Funct Mater. 2020 Dec 1;30(49). doi: 10.1002/adfm.202005531. Epub 2020 Sep 9.

Abstract

The healing of large bone defects represents a clinical challenge, often requiring some form of grafting. Three-dimensional (3D) nanofiber aerogels could be a promising bone graft due to their biomimetic morphology and controlled porous structures and composition. miR-26a has been reported to induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and facilitate bone formation. Introducing miR-26a with a suitable polymeric vector targeting BMSCs could improve and enhance the functions of 3D nanofiber aerogels for bone regeneration. Herein, we first developed the comb-shaped polycation (HA-SS-PGEA) carrying a targeting component, biocleavable groups and short ethanolamine (EA)-decorated poly(glycidyl methacrylate) (PGMA) (abbreviated as PGEA) arms as miR-26a delivery vector. We then assessed the cytotoxicity and transfection efficiency of this polycation and cellular response to miR-26a-incorporated nanoparticles (NPs) . HA-SS-PGEA exhibited a stronger ability to transport miR-26a and exert its functions than the gold standard polyethyleneimine (PEI) and low-molecular-weight linear PGEA. We finally examined the efficacy of HA-SS-PGEA/miR-26a NPs loaded 3D hybrid nanofiber aerogels showing a positive effect on the cranial bone defect healing. Together, the combination of 3D nanofiber aerogels and functional NPs consisting of a biodegradable and targeting polycation and therapeutic miRNA could be a promising approach for bone regeneration.

摘要

大骨缺损的修复是一项临床挑战,通常需要某种形式的移植。三维(3D)纳米纤维气凝胶因其仿生形态、可控的多孔结构和组成,可能成为一种有前景的骨移植材料。据报道,miR-26a可诱导骨髓间充质干细胞(BMSC)分化并促进骨形成。用合适的靶向BMSC的聚合物载体引入miR-26a可以改善和增强3D纳米纤维气凝胶在骨再生方面的功能。在此,我们首先开发了一种梳状聚阳离子(HA-SS-PGEA),它带有靶向成分、可生物裂解基团以及短链乙醇胺(EA)修饰的聚甲基丙烯酸缩水甘油酯(PGMA)(简称为PGEA)臂,作为miR-26a的递送载体。然后,我们评估了这种聚阳离子的细胞毒性和转染效率以及细胞对掺入miR-26a的纳米颗粒(NP)的反应。与金标准聚乙烯亚胺(PEI)和低分子量线性PGEA相比,HA-SS-PGEA表现出更强的转运miR-26a并发挥其功能的能力。我们最后研究了负载HA-SS-PGEA/miR-26a NP的3D混合纳米纤维气凝胶对颅骨缺损愈合的疗效。总之,3D纳米纤维气凝胶与由可生物降解的靶向聚阳离子和治疗性miRNA组成的功能性NP相结合,可能是一种有前景的骨再生方法。

相似文献

2
Novel 3D Hybrid Nanofiber Aerogels Coupled with BMP-2 Peptides for Cranial Bone Regeneration.
Adv Healthc Mater. 2018 May;7(10):e1701415. doi: 10.1002/adhm.201701415. Epub 2018 Mar 2.
3
A biocleavable pullulan-based vector via ATRP for liver cell-targeting gene delivery.
Biomaterials. 2014 Apr;35(12):3873-84. doi: 10.1016/j.biomaterials.2014.01.036. Epub 2014 Jan 30.
4
Facilitation of gene transfection with well-defined degradable comb-shaped poly(glycidyl methacrylate) derivative vectors.
Bioconjug Chem. 2012 Mar 21;23(3):618-26. doi: 10.1021/bc200658r. Epub 2012 Feb 29.
6
Development of miR-26a-activated scaffold to promote healing of critical-sized bone defects through angiogenic and osteogenic mechanisms.
Biomaterials. 2023 Dec;303:122398. doi: 10.1016/j.biomaterials.2023.122398. Epub 2023 Nov 13.
7
Preparation of polycation with hydroxyls for enhanced delivery of miRNA in osteosarcoma therapy.
Biomater Sci. 2022 May 31;10(11):2844-2856. doi: 10.1039/d2bm00253a.
10
DP7-C/mir-26a system promotes bone regeneration by remodeling the osteogenic immune microenvironment.
Oral Dis. 2024 Nov;30(8):5203-5220. doi: 10.1111/odi.14910. Epub 2024 Mar 19.

引用本文的文献

3
New dimensions of electrospun nanofiber material designs for biotechnological uses.
Trends Biotechnol. 2024 May;42(5):631-647. doi: 10.1016/j.tibtech.2023.11.008. Epub 2023 Dec 28.
7
Nanofiber Aerogels with Precision Macrochannels and LL-37-Mimic Peptides Synergistically Promote Diabetic Wound Healing.
Adv Funct Mater. 2023 Jan 3;33(1). doi: 10.1002/adfm.202206936. Epub 2022 Oct 31.
8
MicroRNA-loaded biomaterials for osteogenesis.
Front Bioeng Biotechnol. 2022 Sep 19;10:952670. doi: 10.3389/fbioe.2022.952670. eCollection 2022.
9
Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects.
Bioact Mater. 2022 Sep 7;21:223-238. doi: 10.1016/j.bioactmat.2022.08.012. eCollection 2023 Mar.

本文引用的文献

1
Creatine based polymer for codelivery of bioengineered MicroRNA and chemodrugs against breast cancer lung metastasis.
Biomaterials. 2019 Jul;210:25-40. doi: 10.1016/j.biomaterials.2019.04.025. Epub 2019 Apr 26.
2
Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration.
Acta Biomater. 2019 Feb;85:282-293. doi: 10.1016/j.actbio.2018.12.051. Epub 2018 Dec 31.
4
Fluorinated Acid-Labile Branched Hydroxyl-Rich Nanosystems for Flexible and Robust Delivery of Plasmids.
Small. 2018 Oct;14(42):e1803061. doi: 10.1002/smll.201803061. Epub 2018 Sep 20.
5
Electrospraying Electrospun Nanofiber Segments into Injectable Microspheres for Potential Cell Delivery.
ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25069-25079. doi: 10.1021/acsami.8b06386. Epub 2018 Jul 20.
6
Novel 3D Hybrid Nanofiber Aerogels Coupled with BMP-2 Peptides for Cranial Bone Regeneration.
Adv Healthc Mater. 2018 May;7(10):e1701415. doi: 10.1002/adhm.201701415. Epub 2018 Mar 2.
7
Binary Doping of Strontium and Copper Enhancing Osteogenesis and Angiogenesis of Bioactive Glass Nanofibers while Suppressing Osteoclast Activity.
ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24484-24496. doi: 10.1021/acsami.7b06521. Epub 2017 Jul 12.
8
Enzymatically crosslinked silk-hyaluronic acid hydrogels.
Biomaterials. 2017 Jul;131:58-67. doi: 10.1016/j.biomaterials.2017.03.046. Epub 2017 Mar 27.
9
Bioreducible Zinc(II)-Coordinative Polyethylenimine with Low Molecular Weight for Robust Gene Delivery of Primary and Stem Cells.
J Am Chem Soc. 2017 Apr 12;139(14):5102-5109. doi: 10.1021/jacs.6b13337. Epub 2017 Mar 30.
10
Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy.
J Control Release. 2017 Jan 28;246:110-119. doi: 10.1016/j.jconrel.2016.12.017. Epub 2016 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验