Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
BMC Med Res Methodol. 2021 Jul 31;21(1):160. doi: 10.1186/s12874-021-01344-4.
Data monitoring of clinical trials is a tool aimed at reducing the risks of random errors (e.g. clerical errors) and systematic errors, which include misinterpretation, misunderstandings, and fabrication. Traditional 'good clinical practice data monitoring' with on-site monitors increases trial costs and is time consuming for the local investigators. This paper aims to outline our approach of time-effective central data monitoring for the SafeBoosC-III multicentre randomised clinical trial and present the results from the first three central data monitoring meetings.
The present approach to central data monitoring was implemented for the SafeBoosC-III trial, a large, pragmatic, multicentre, randomised clinical trial evaluating the benefits and harms of treatment based on cerebral oxygenation monitoring in preterm infants during the first days of life versus monitoring and treatment as usual. We aimed to optimise completeness and quality and to minimise deviations, thereby limiting random and systematic errors. We designed an automated report which was blinded to group allocation, to ease the work of data monitoring. The central data monitoring group first reviewed the data using summary plots only, and thereafter included the results of the multivariate Mahalanobis distance of each centre from the common mean. The decisions of the group were manually added to the reports for dissemination, information, correcting errors, preventing furture errors and documentation.
The first three central monitoring meetings identified 156 entries of interest, decided upon contacting the local investigators for 146 of these, which resulted in correction of 53 entries. Multiple systematic errors and protocol violations were identified, one of these included 103/818 randomised participants. Accordingly, the electronic participant record form (ePRF) was improved to reduce ambiguity.
We present a methodology for central data monitoring to optimise quality control and quality development. The initial results included identification of random errors in data entries leading to correction of the ePRF, systematic protocol violations, and potential protocol adherence issues. Central data monitoring may optimise concurrent data completeness and may help timely detection of data deviations due to misunderstandings or fabricated data.
临床试验的数据监测是一种旨在降低随机误差(例如,抄写错误)和系统误差风险的工具,系统误差包括误解、混淆和捏造。传统的“良好临床实践数据监测”与现场监测员一起增加了试验成本,并耗费了当地研究者大量时间。本文旨在概述我们用于 SafeBoosC-III 多中心随机临床试验的高效中央数据监测方法,并介绍前三次中央数据监测会议的结果。
本研究采用的中央数据监测方法应用于 SafeBoosC-III 试验,该试验是一项大型、实用、多中心、随机临床试验,旨在评估基于早产儿生命早期脑氧合监测的治疗效果和危害,与常规监测和治疗相比。我们旨在优化完整性和质量,并尽量减少偏差,从而限制随机和系统误差。我们设计了一个自动化报告,该报告对分组分配进行了盲法处理,以简化数据监测的工作。中央数据监测小组首先仅使用汇总图审查数据,然后包括每个中心与共同平均值的多元马氏距离的结果。小组的决定手动添加到报告中,以进行传播、信息、纠正错误、防止未来错误和记录。
前三次中央监测会议确定了 156 个感兴趣的条目,决定联系当地研究者处理其中的 146 个条目,这导致了 53 个条目的更正。确定了多个系统误差和违反方案的情况,其中一个包括 103/818 名随机参与者。因此,改进了电子参与者记录表单(ePRF)以减少歧义。
我们提出了一种用于中央数据监测的方法,以优化质量控制和质量发展。最初的结果包括识别数据录入中的随机误差,导致对 ePRF 的更正、系统协议违规以及潜在的协议遵守问题。中央数据监测可以优化并发数据的完整性,并有助于及时检测因误解或捏造数据而导致的数据偏差。