Suppr超能文献

一种用于提高冗余机器人运动规划完备性的新型循环神经网络。

A Novel Recurrent Neural Network for Improving Redundant Manipulator Motion Planning Completeness.

作者信息

Li Yangming, Li Shuai, Hannaford Blake

机构信息

Department of Electrical Engineering, University of Washington, Seattle, WA, USA 98195.

Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong.

出版信息

IEEE Int Conf Robot Autom. 2018 May;2018:2956-2961. doi: 10.1109/icra.2018.8461204. Epub 2018 Sep 13.

Abstract

Recurrent Neural Networks (RNNs) demonstrated advantages on control precision, system robustness and computational efficiency, and have been widely applied to redundant manipulator control optimization. Existing RNN control schemes locally optimize trajectories and are efficient and reliable on obstacle avoidance. However, for motion planning, they suffer from local minimum and do not have planning completeness. This work explained the cause of the planning incompleteness and addressed the problem with a novel RNN control scheme. The paper presented the proposed method in detail and analyzed the global stability and the planning completeness in theory. The proposed method was compared with other three control schemes on the precision, the robustness and the planning completeness in software simulation and the results shows the proposed method has improved precision and robustness, and planning completeness.

摘要

递归神经网络(RNN)在控制精度、系统鲁棒性和计算效率方面展现出优势,并已广泛应用于冗余机器人控制优化。现有的RNN控制方案可对轨迹进行局部优化,在避障方面高效且可靠。然而,对于运动规划而言,它们存在局部极小值问题且不具备规划完备性。这项工作解释了规划不完备性的原因,并采用一种新颖的RNN控制方案解决了该问题。本文详细介绍了所提出的方法,并从理论上分析了全局稳定性和规划完备性。在软件仿真中,将所提出的方法与其他三种控制方案在精度、鲁棒性和规划完备性方面进行了比较,结果表明所提出的方法在精度、鲁棒性和规划完备性方面均有提升。

相似文献

1
A Novel Recurrent Neural Network for Improving Redundant Manipulator Motion Planning Completeness.
IEEE Int Conf Robot Autom. 2018 May;2018:2956-2961. doi: 10.1109/icra.2018.8461204. Epub 2018 Sep 13.
2
A Model-Based Recurrent Neural Network With Randomness for Efficient Control With Applications.
IEEE Trans Industr Inform. 2019 Apr;15(4):2054-2063. doi: 10.1109/TII.2018.2869588. Epub 2018 Sep 10.
3
Bi-criteria Acceleration Level Obstacle Avoidance of Redundant Manipulator.
Front Neurorobot. 2020 Oct 15;14:54. doi: 10.3389/fnbot.2020.00054. eCollection 2020.
4
Kinematic Control of Redundant Manipulators Using Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2243-2254. doi: 10.1109/TNNLS.2016.2574363. Epub 2016 Jun 24.
5
RNN for Repetitive Motion Generation of Redundant Robot Manipulators: An Orthogonal Projection-Based Scheme.
IEEE Trans Neural Netw Learn Syst. 2022 Feb;33(2):615-628. doi: 10.1109/TNNLS.2020.3028304. Epub 2022 Feb 3.
6
A New Noise-Tolerant Obstacle Avoidance Scheme for Motion Planning of Redundant Robot Manipulators.
Front Neurorobot. 2018 Aug 29;12:51. doi: 10.3389/fnbot.2018.00051. eCollection 2018.
8
Cooperative Dynamic Motion Planning for Dual Manipulator Arms Based on RRT*Smart-AD Algorithm.
Sensors (Basel). 2023 Sep 8;23(18):7759. doi: 10.3390/s23187759.
9
Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results.
Neural Netw. 2020 Nov;131:291-299. doi: 10.1016/j.neunet.2020.07.033. Epub 2020 Aug 12.

引用本文的文献

1
Three-Dimensional Dense Reconstruction: A Review of Algorithms and Datasets.
Sensors (Basel). 2024 Sep 10;24(18):5861. doi: 10.3390/s24185861.
2
Multimodal intelligent logistics robot combining 3D CNN, LSTM, and visual SLAM for path planning and control.
Front Neurorobot. 2023 Oct 16;17:1285673. doi: 10.3389/fnbot.2023.1285673. eCollection 2023.
3
Deep causal learning for robotic intelligence.
Front Neurorobot. 2023 Feb 22;17:1128591. doi: 10.3389/fnbot.2023.1128591. eCollection 2023.
4
A Model-Based Recurrent Neural Network With Randomness for Efficient Control With Applications.
IEEE Trans Industr Inform. 2019 Apr;15(4):2054-2063. doi: 10.1109/TII.2018.2869588. Epub 2018 Sep 10.

本文引用的文献

1
Kinematic Control of Redundant Manipulators Using Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2243-2254. doi: 10.1109/TNNLS.2016.2574363. Epub 2016 Jun 24.
2
Distributed Recurrent Neural Networks for Cooperative Control of Manipulators: A Game-Theoretic Perspective.
IEEE Trans Neural Netw Learn Syst. 2017 Feb;28(2):415-426. doi: 10.1109/TNNLS.2016.2516565. Epub 2016 Jan 21.
3
Human-level concept learning through probabilistic program induction.
Science. 2015 Dec 11;350(6266):1332-8. doi: 10.1126/science.aab3050.
4
Model learning for robot control: a survey.
Cogn Process. 2011 Nov;12(4):319-40. doi: 10.1007/s10339-011-0404-1. Epub 2011 Apr 13.
5
A dual neural network for kinematic control of redundant robot manipulators.
IEEE Trans Syst Man Cybern B Cybern. 2001;31(1):147-54. doi: 10.1109/3477.907574.
7
Obstacle avoidance for kinematically redundant manipulators using a dual neural network.
IEEE Trans Syst Man Cybern B Cybern. 2004 Feb;34(1):752-9. doi: 10.1109/tsmcb.2003.811519.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验