Department of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, VIC, Australia.
Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
Diabetologia. 2021 Nov;64(11):2432-2444. doi: 10.1007/s00125-021-05523-2. Epub 2021 Aug 2.
AIMS/HYPOTHESIS: Accurate prediction of disease progression in individuals with pre-symptomatic type 1 diabetes has potential to prevent ketoacidosis and accelerate development of disease-modifying therapies. Current tools for predicting risk require multiple blood samples taken during an OGTT. Our aim was to develop and validate a simpler tool based on a single blood draw.
Models to predict disease progression using a single OGTT time point (0, 30, 60, 90 or 120 min) were developed using TrialNet data collected from relatives with type 1 diabetes and validated in independent populations at high genetic risk of type 1 diabetes (TrialNet, Diabetes Prevention Trial-Type 1, The Environmental Determinants of Diabetes in the Young [1]) and in a general population of Bavarian children who participated in Fr1da.
Cox proportional hazards models combining plasma glucose, C-peptide, sex, age, BMI, HbA and insulinoma antigen-2 autoantibody status predicted disease progression in all populations. In TrialNet, the AUC for receiver operating characteristic curves for models named M, M and M, based on sampling at 60, 90 and 120 min, was 0.760, 0.761 and 0.745, respectively. These were not significantly different from the AUC of 0.760 for the gold standard Diabetes Prevention Trial Risk Score, which requires five OGTT blood samples. In TEDDY, where only 120 min blood sampling had been performed, the M AUC was 0.865. In Fr1da, the M AUC of 0.742 was significantly greater than the M AUC of 0.615.
CONCLUSIONS/INTERPRETATION: Prediction models based on a single OGTT blood draw accurately predict disease progression from stage 1 or 2 to stage 3 type 1 diabetes. The operational simplicity of M, its validity across different at-risk populations and the requirement for 120 min sampling to stage type 1 diabetes suggest M could be readily applied to decrease the cost and complexity of risk stratification.
目的/假设:准确预测无症状 1 型糖尿病个体的疾病进展,有可能预防酮症酸中毒并加速疾病修饰疗法的发展。目前用于预测风险的工具需要在 OGTT 期间采集多次血样。我们的目的是开发和验证一种基于单次采血的更简单工具。
使用来自 1 型糖尿病亲属的 TrialNet 数据,基于单点 OGTT 时间点(0、30、60、90 或 120 分钟)建立预测疾病进展的模型,并在高 1 型糖尿病遗传风险人群中进行验证(TrialNet、糖尿病预防试验 1 型、青年环境决定糖尿病 [1])和巴伐利亚儿童的一般人群中,他们参加了 Fr1da。
结合血浆葡萄糖、C 肽、性别、年龄、BMI、HbA 和胰岛素瘤抗原-2 自身抗体状态的 Cox 比例风险模型在所有人群中预测疾病进展。在 TrialNet 中,基于 60、90 和 120 分钟采样的模型 M、M 和 M 的接收器工作特征曲线的 AUC 分别为 0.760、0.761 和 0.745,这些与需要 5 次 OGTT 采血的黄金标准糖尿病预防试验风险评分的 AUC(0.760)无显著差异。在仅进行 120 分钟采血的 TEDDY 中,M 的 AUC 为 0.865。在 Fr1da 中,M 的 AUC(0.742)显著大于 M 的 AUC(0.615)。
结论/解释:基于单点 OGTT 采血的预测模型可准确预测从 1 型糖尿病 1 期或 2 期进展至 3 期。M 在不同高危人群中的有效性、其操作简便性以及需要 120 分钟采样来分期 1 型糖尿病,表明 M 可以很容易地应用于降低风险分层的成本和复杂性。