Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain.
Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.
ACS Appl Mater Interfaces. 2021 Aug 11;13(31):37734-37745. doi: 10.1021/acsami.1c11446. Epub 2021 Aug 2.
Versatile sensing matrixes are essential for the development of enzyme-immobilized optical biosensors. A novel three-dimensional titanium dioxide nanotubes/alginate hydrogel scaffold is proposed for the detection of sweat biomarkers, lactate, and glucose in artificial sweat. Hydrothermally synthesized titanium dioxide nanotubes were introduced to the alginate polymeric matrix, followed by cross-linking nanocomposite with dicationic calcium ions to fabricate the scaffold platform. Rapid colorimetric detection (blue color optical signal) was carried out for both lactate and glucose biomarkers in artificial sweat at 4 and 6 min, respectively. The superhydrophilicity and the capillarity of the synthesized titanium dioxide nanotubes, when incorporated into the alginate matrix, facilitate the rapid transfer of the artificial sweat components throughout the sensor scaffold, decreasing the detection times. Moreover, the scaffold was integrated on a cellulose paper to demonstrate the adaptability of the material to other matrixes, obtaining fast and homogeneous colorimetric detection of lactate and glucose in the paper substrate when image analysis was performed. The properties of this new composite provide new avenues in the development of paper-based sensor devices. The biocompatibility, the efficient immobilization of biological enzymes/colorimetric assays, and the quick optical signal readout behavior of the titanium dioxide nanotubes/alginate hydrogel scaffolds provide a prospective opportunity for integration into wearable devices.
多功能传感矩阵对于酶固定化光学生物传感器的发展至关重要。提出了一种新型的三维二氧化钛纳米管/海藻酸钠水凝胶支架,用于检测人工汗液中的乳酸盐和葡萄糖等汗液生物标志物。水热合成的二氧化钛纳米管被引入海藻酸钠聚合物基质中,然后用二价钙离子交联纳米复合材料来制备支架平台。在人工汗液中,分别在 4 分钟和 6 分钟时对乳酸盐和葡萄糖生物标志物进行快速比色检测(蓝色光学信号)。当将合成的二氧化钛纳米管掺入海藻酸钠基质中时,其超亲水性和毛细管作用可促进人工汗液成分快速穿透传感器支架,从而缩短检测时间。此外,该支架集成在纤维素纸上,以证明该材料对其他基质的适应性,当进行图像分析时,在纸基质中可快速、均匀地检测乳酸盐和葡萄糖的比色。这种新型复合材料的特性为基于纸张的传感器设备的发展提供了新途径。二氧化钛纳米管/海藻酸钠水凝胶支架的生物相容性、生物酶的有效固定化和快速光学信号读出特性为集成到可穿戴设备中提供了有前景的机会。