Suppr超能文献

治疗结果聚类模式与儿童的离散哮喘表型相对应。

Treatment outcome clustering patterns correspond to discrete asthma phenotypes in children.

作者信息

Banić Ivana, Lovrić Mario, Cuder Gerald, Kern Roman, Rijavec Matija, Korošec Peter, Turkalj Mirjana

机构信息

Srebrnjak Children's Hospital, Srebrnjak 100, 10000, Zagreb, Croatia.

Know-Center, Infeldgasse 13, Graz, AT-8010, Austria.

出版信息

Asthma Res Pract. 2021 Aug 3;7(1):11. doi: 10.1186/s40733-021-00077-x.

Abstract

Despite widely and regularly used therapy asthma in children is not fully controlled. Recognizing the complexity of asthma phenotypes and endotypes imposed the concept of precision medicine in asthma treatment. By applying machine learning algorithms assessed with respect to their accuracy in predicting treatment outcome, we have successfully identified 4 distinct clusters in a pediatric asthma cohort with specific treatment outcome patterns according to changes in lung function (FEV and MEF), airway inflammation (FENO) and disease control likely affected by discrete phenotypes at initial disease presentation, differing in the type and level of inflammation, age of onset, comorbidities, certain genetic and other physiologic traits. The smallest and the largest of the 4 clusters- 1 (N = 58) and 3 (N = 138) had better treatment outcomes compared to clusters 2 and 4 and were characterized by more prominent atopic markers and a predominant allelic (A allele) effect for rs37973 in the GLCCI1 gene previously associated with positive treatment outcomes in asthmatics. These patients also had a relatively later onset of disease (6 + yrs). Clusters 2 (N = 87) and 4 (N = 64) had poorer treatment success, but varied in the type of inflammation (predominantly neutrophilic for cluster 4 and likely mixed-type for cluster 2), comorbidities (obesity for cluster 2), level of systemic inflammation (highest hsCRP for cluster 2) and platelet count (lowest for cluster 4). The results of this study emphasize the issues in asthma management due to the overgeneralized approach to the disease, not taking into account specific disease phenotypes.

摘要

尽管在儿童中广泛且常规地使用了哮喘治疗方法,但哮喘并未得到完全控制。认识到哮喘表型和内型的复杂性,催生了哮喘治疗中的精准医学概念。通过应用机器学习算法,并根据其预测治疗结果的准确性进行评估,我们在一个儿科哮喘队列中成功识别出4个不同的集群,这些集群具有特定的治疗结果模式,这些模式取决于肺功能(FEV和MEF)的变化、气道炎症(FENO)以及在疾病初发时可能受离散表型影响的疾病控制情况,在炎症类型和程度、发病年龄、合并症、某些基因和其他生理特征方面存在差异。4个集群中最小和最大的集群——集群1(N = 58)和集群3(N = 138)与集群2和4相比,治疗结果更好,其特征是具有更突出的特应性标志物,以及GLCCI1基因中rs37973的主要等位基因(A等位基因)效应,该基因先前与哮喘患者的积极治疗结果相关。这些患者的疾病发病相对较晚(6岁以上)。集群2(N = 87)和集群4(N = 64)的治疗成功率较低,但在炎症类型(集群4主要为嗜中性粒细胞性,集群2可能为混合型)、合并症(集群2为肥胖)、全身炎症水平(集群2的hsCRP最高)和血小板计数(集群4最低)方面存在差异。这项研究的结果强调了哮喘管理中存在的问题,因为对该疾病的处理方法过于一概而论,没有考虑到特定的疾病表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e5f/8330019/5817e057a8e7/40733_2021_77_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验