Suppr超能文献

一种用于诊断早期食管鳞状细胞癌的新型深度学习系统:一项多中心诊断研究。

A Novel Deep Learning System for Diagnosing Early Esophageal Squamous Cell Carcinoma: A Multicenter Diagnostic Study.

机构信息

Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, Jiangsu, China.

Jiangsu Key Laboratory of Big Data Analysis Technology (B-DAT), Nanjing University of Information Science and Technology, Nanjing, China.

出版信息

Clin Transl Gastroenterol. 2021 Aug 4;12(8):e00393. doi: 10.14309/ctg.0000000000000393.

Abstract

INTRODUCTION

This study aims to construct a real-time deep convolutional neural networks (DCNNs) system to diagnose early esophageal squamous cell carcinoma (ESCC) with white light imaging endoscopy.

METHODS

A total of 4,002 images from 1,078 patients were used to train and cross-validate the DCNN model for diagnosing early ESCC. The performance of the model was further tested with independent internal and external validation data sets containing 1,033 images from 243 patients. The performance of the model was then compared with endoscopists. The accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and Cohen kappa coefficient were measured to assess performance.

RESULTS

The DCNN model had excellent performance in diagnosing early ESCC with a sensitivity of 0.979, a specificity of 0.886, a positive predictive value of 0.777, a negative predictive value of 0.991, and an area under curve of 0.954 in the internal validation data set. The model also depicted a tremendously generalized performance in 2 external data sets and exhibited superior performance compared with endoscopists. The performance of the endoscopists was markedly elevated after referring to the predictions of the DCNN model. An open-accessed website of the DCNN system was established to facilitate associated research.

DISCUSSION

A real-time DCNN system, which was constructed to diagnose early ESCC, showed good performance in validation data sets. However, more prospective validation is needed to understand its true clinical significance in the real world.

摘要

简介

本研究旨在构建一个实时深度卷积神经网络(DCNN)系统,以白光成像内镜诊断早期食管鳞状细胞癌(ESCC)。

方法

共使用来自 1,078 名患者的 4,002 张图像来训练和交叉验证用于诊断早期 ESCC 的 DCNN 模型。使用包含 243 名患者的 1,033 张图像的独立内部和外部验证数据集进一步测试模型的性能。然后将模型的性能与内镜医生进行比较。测量准确性、敏感性、特异性、阳性预测值、阴性预测值和 Cohen kappa 系数来评估性能。

结果

DCNN 模型在诊断早期 ESCC 方面表现出色,在内部验证数据集中的敏感性为 0.979、特异性为 0.886、阳性预测值为 0.777、阴性预测值为 0.991 和曲线下面积为 0.954。该模型在 2 个外部数据集也表现出了极好的泛化性能,并表现出优于内镜医生的性能。在参考 DCNN 模型的预测后,内镜医生的表现明显提高。建立了一个 DCNN 系统的开放访问网站,以促进相关研究。

讨论

一个用于诊断早期 ESCC 的实时 DCNN 系统在验证数据集上表现出良好的性能。然而,需要更多的前瞻性验证来了解其在现实世界中的真正临床意义。

相似文献

1
A Novel Deep Learning System for Diagnosing Early Esophageal Squamous Cell Carcinoma: A Multicenter Diagnostic Study.
Clin Transl Gastroenterol. 2021 Aug 4;12(8):e00393. doi: 10.14309/ctg.0000000000000393.
2
Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists.
Gastrointest Endosc. 2019 Sep;90(3):407-414. doi: 10.1016/j.gie.2019.04.245. Epub 2019 May 8.
3
Artificial Intelligence for Detecting and Delineating Margins of Early ESCC Under WLI Endoscopy.
Clin Transl Gastroenterol. 2022 Jan 11;13(1):e00433. doi: 10.14309/ctg.0000000000000433.
9
Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus.
Esophagus. 2019 Apr;16(2):180-187. doi: 10.1007/s10388-018-0651-7. Epub 2018 Dec 13.
10
Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video).
Gastrointest Endosc. 2019 Nov;90(5):745-753.e2. doi: 10.1016/j.gie.2019.06.044. Epub 2019 Jul 11.

引用本文的文献

1
Research status and progress of deep learning in automatic esophageal cancer detection.
World J Gastrointest Oncol. 2025 May 15;17(5):104410. doi: 10.4251/wjgo.v17.i5.104410.
6
Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions.
Chin Med J (Engl). 2025 Jun 20;138(12):1387-1398. doi: 10.1097/CM9.0000000000003490. Epub 2025 Feb 26.
7
Deep Learning for Image Analysis in the Diagnosis and Management of Esophageal Cancer.
Cancers (Basel). 2024 Sep 26;16(19):3285. doi: 10.3390/cancers16193285.
10
Machine learning applications for early detection of esophageal cancer: a systematic review.
BMC Med Inform Decis Mak. 2023 Jul 17;23(1):124. doi: 10.1186/s12911-023-02235-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验