Suppr超能文献

仅根据患者报告的疼痛分布进行层次聚类可识别出不同的慢性疼痛亚组,这些亚组在疼痛强度、质量和临床结局方面存在差异。

Hierarchical clustering by patient-reported pain distribution alone identifies distinct chronic pain subgroups differing by pain intensity, quality, and clinical outcomes.

机构信息

Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.

Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS One. 2021 Aug 4;16(8):e0254862. doi: 10.1371/journal.pone.0254862. eCollection 2021.

Abstract

BACKGROUND

In clinical practice, the bodily distribution of chronic pain is often used in conjunction with other signs and symptoms to support a diagnosis or treatment plan. For example, the diagnosis of fibromyalgia involves tallying the areas of pain that a patient reports using a drawn body map. It remains unclear whether patterns of pain distribution independently inform aspects of the pain experience and influence patient outcomes. The objective of the current study was to evaluate the clinical relevance of patterns of pain distribution using an algorithmic approach agnostic to diagnosis or patient-reported facets of the pain experience.

METHODS AND FINDINGS

A large cohort of patients (N = 21,658) completed pain body maps and a multi-dimensional pain assessment. Using hierarchical clustering of patients by body map selection alone, nine distinct subgroups emerged with different patterns of body region selection. Clinician review of cluster body maps recapitulated some clinically-relevant patterns of pain distribution, such as low back pain with radiation below the knee and widespread pain, as well as some unique patterns. Demographic and medical characteristics, pain intensity, pain impact, and neuropathic pain quality all varied significantly across cluster subgroups. Multivariate modeling demonstrated that cluster membership independently predicted pain intensity and neuropathic pain quality. In a subset of patients who completed 3-month follow-up questionnaires (N = 7,138), cluster membership independently predicted the likelihood of improvement in pain, physical function, and a positive overall impression of change related to multidisciplinary pain care.

CONCLUSIONS

This study reports a novel method of grouping patients by pain distribution using an algorithmic approach. Pain distribution subgroup was significantly associated with differences in pain intensity, impact, and clinically relevant outcomes. In the future, algorithmic clustering by pain distribution may be an important facet in chronic pain biosignatures developed for the personalization of pain management.

摘要

背景

在临床实践中,慢性疼痛的身体分布常与其他体征和症状一起用于支持诊断或治疗计划。例如,纤维肌痛的诊断包括计算患者报告的疼痛区域,使用绘制的身体图谱进行计数。目前尚不清楚疼痛分布模式是否独立提供疼痛体验的某些方面信息,并影响患者的结果。本研究的目的是使用一种与诊断或患者报告的疼痛体验方面无关的算法方法来评估疼痛分布模式的临床相关性。

方法和发现

大量患者(N=21658)完成了疼痛体图和多维疼痛评估。仅通过体图选择对患者进行分层聚类,就出现了 9 个不同的亚组,具有不同的身体区域选择模式。临床医生对聚类体图的回顾再现了一些临床上相关的疼痛分布模式,例如下肢疼痛伴膝关节以下辐射和广泛疼痛,以及一些独特的模式。患者的人口统计学和医学特征、疼痛强度、疼痛影响以及神经病理性疼痛质量在聚类亚组之间均有显著差异。多变量建模表明,聚类成员身份独立预测疼痛强度和神经病理性疼痛质量。在完成 3 个月随访问卷的患者亚组(N=7138)中,聚类成员身份独立预测疼痛、身体功能的改善以及与多学科疼痛护理相关的积极整体变化印象的可能性。

结论

本研究报告了一种使用算法方法根据疼痛分布对患者进行分组的新方法。疼痛分布亚组与疼痛强度、影响以及临床相关结果的差异显著相关。在未来,基于疼痛分布的算法聚类可能是为疼痛管理的个性化开发慢性疼痛生物标志物的一个重要方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bff5/8336800/2b51a3195585/pone.0254862.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验