Suppr超能文献

新发和复发性转移性乳腺癌的预后模型

Prognostic Model for De Novo and Recurrent Metastatic Breast Cancer.

作者信息

Barcenas Carlos H, Song Juhee, Murthy Rashmi K, Raghavendra Akshara S, Li Yisheng, Hsu Limin, Carlson Robert W, Tripathy Debu, Hortobagyi Gabriel N

机构信息

Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX.

出版信息

JCO Clin Cancer Inform. 2021 Aug;5:789-804. doi: 10.1200/CCI.21.00020.

Abstract

PURPOSE

Metastatic breast cancer (MBC) has a heterogeneous clinical course. We sought to develop a prognostic model for overall survival (OS) that incorporated contemporary tumor and clinical factors for estimating individual prognosis.

METHODS

We identified patients with MBC from our institution diagnosed between 1998 and 2017. We developed OS prognostic models by Cox regression using demographic, tumor, and treatment variables. We assessed model predictive accuracy and estimated annual OS probabilities. We evaluated model discrimination and prediction calibration using an external validation data set from the National Comprehensive Cancer Network.

RESULTS

We identified 10,655 patients. A model using age at diagnosis, race or ethnicity, hormone receptor and human epidermal growth factor receptor 2 subtype, de novo versus recurrent MBC categorized by metastasis-free interval, Karnofsky performance status, organ involvement, frontline biotherapy, frontline hormone therapy, and the interaction between variables significantly improved predictive accuracy (C-index, 0.731; 95% CI, 0.724 to 0.739) compared with a model with only hormone receptor and human epidermal growth factor receptor 2 status (C-index, 0.617; 95% CI, 0.609 to 0.626). The extended Cox regression model consisting of six independent models, for < 3, 3-14, 14-20, 20-33, 33-61, and ≥ 61 months, estimated up to 5 years of annual OS probabilities. The selected multifactor model had good discriminative ability but suboptimal calibration in the group of 2,334 National Comprehensive Cancer Network patients. A recalibration model that replaced the baseline survival function with the average of those from the training and validation data improved predictions across both data sets.

CONCLUSION

We have generated and validated a robust prognostic OS model for MBC. This model can be used in clinical decision making and stratification in clinical trials.

摘要

目的

转移性乳腺癌(MBC)的临床病程具有异质性。我们试图开发一种总生存期(OS)的预后模型,该模型纳入当代肿瘤和临床因素以估计个体预后。

方法

我们从本机构中确定了1998年至2017年间诊断为MBC的患者。我们通过Cox回归使用人口统计学、肿瘤和治疗变量开发了OS预后模型。我们评估了模型的预测准确性并估计了年度OS概率。我们使用来自美国国立综合癌症网络的外部验证数据集评估了模型的区分度和预测校准。

结果

我们确定了10655例患者。与仅包含激素受体和人表皮生长因子受体2状态的模型(C指数,0.617;95%CI,0.609至0.626)相比,使用诊断时年龄、种族或族裔、激素受体和人表皮生长因子受体2亚型、根据无转移间隔分类的新发与复发性MBC、卡诺夫斯基功能状态、器官受累情况、一线生物治疗、一线激素治疗以及变量之间的相互作用的模型显著提高了预测准确性(C指数,0.731;95%CI,0.724至0.739)。由六个独立模型组成的扩展Cox回归模型,针对<3、3 - 14、14 - 20、20 - 33、33 - 61和≥61个月,估计了长达5年的年度OS概率。所选的多因素模型在2334例美国国立综合癌症网络患者组中具有良好的区分能力,但校准欠佳。一种用训练和验证数据的平均值替代基线生存函数的重新校准模型改善了两个数据集的预测。

结论

我们生成并验证了一种用于MBC的强大的OS预后模型。该模型可用于临床试验中的临床决策和分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949f/8807018/895e016b5a6c/cci-5-cci.21.00020-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验