Moon Eunseong, Lee Inhee, Blaauw David, Phillips Jamie D
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA.
Prog Photovolt. 2019 Jun;27(6):540-546. doi: 10.1002/pip.3132. Epub 2019 Mar 28.
Photovoltaic modules at the mm-scale are demonstrated in this work to power wirelessly interconnected mm-scale sensor systems operating under low flux conditions, enabling applications in the Internet of Things and biological sensors. Module efficiency is found to be limited by perimeter recombination for individual cells, and shunt leakage for the series-connected module configuration. We utilize GaAs and AlGaAs junction barrier isolation between interconnected cells to dramatically reduce shunt leakage current. A photovoltaic module with eight series-connected cells and total area of 1.27-mm demonstrates a power conversion efficiency of greater than 26 % under low-flux near infrared illumination (850 nm at 1 μW/mm). The output voltage of the module is greater than 5 V, providing a voltage up-conversion efficiency of more than 90 %. We demonstrate direct photovoltaic charging of a 16 μAh pair of thin-film lithium-ion batteries under dim light conditions, enabling the perpetual operation of practical mm-scale wirelessly interconnected systems.
在这项工作中展示了毫米级的光伏模块,用于为在低通量条件下运行的无线互连毫米级传感器系统供电,从而实现物联网和生物传感器中的应用。发现模块效率受单个电池的周边复合以及串联模块配置的并联泄漏限制。我们在互连电池之间利用砷化镓和铝镓砷结势垒隔离来大幅降低并联泄漏电流。一个具有八个串联电池且总面积为1.27平方毫米的光伏模块在低通量近红外照明(850纳米,1微瓦/平方毫米)下展示出大于26%的功率转换效率。该模块的输出电压大于5伏,提供了超过90%的电压上转换效率。我们展示了在暗光条件下对一对16微安的薄膜锂离子电池进行直接光伏充电,实现了实用的毫米级无线互连系统的永久运行。