Suppr超能文献

相似文献

1
High-Efficiency Photovoltaic Modules on a Chip for Millimeter-Scale Energy Harvesting.
Prog Photovolt. 2019 Jun;27(6):540-546. doi: 10.1002/pip.3132. Epub 2019 Mar 28.
2
Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes.
IEEE J Photovolt. 2020 Nov;10(6):1721-1726. doi: 10.1109/JPHOTOV.2020.3025450. Epub 2020 Oct 5.
3
Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.
IEEE Trans Electron Devices. 2016 Jul;63(7):2820-2825. doi: 10.1109/TED.2016.2569079.
4
All-polymer indoor photovoltaic modules.
iScience. 2021 Sep 9;24(10):103104. doi: 10.1016/j.isci.2021.103104. eCollection 2021 Oct 22.
6
Small-area Si Photovoltaics for Low-Flux Infrared Energy Harvesting.
IEEE Trans Electron Devices. 2017 Jan;64(1):15-20. doi: 10.1109/TED.2016.2626246. Epub 2016 Nov 17.
7
Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics.
IEEE Trans Electron Devices. 2017 Nov;64(11):4554-4560. doi: 10.1109/TED.2017.2746094. Epub 2017 Sep 6.
8
High-Performance Organic Energy-Harvesting Devices and Modules for Self-Sustainable Power Generation under Ambient Indoor Lighting Environments.
ACS Appl Mater Interfaces. 2019 Mar 6;11(9):9259-9264. doi: 10.1021/acsami.9b00018. Epub 2019 Feb 21.
9
Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.
IEEE Trans Electron Devices. 2017 May;64(5):2432-2437. doi: 10.1109/TED.2017.2681694. Epub 2017 Mar 27.
10
Alkoxybenzothiadiazole-Based Fullerene and Nonfullerene Polymer Solar Cells with High Shunt Resistance for Indoor Photovoltaic Applications.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3885-3894. doi: 10.1021/acsami.7b18152. Epub 2018 Jan 19.

引用本文的文献

1
Millimeter-scale radioluminescent power for electronic sensors.
iScience. 2024 Dec 25;28(1):111686. doi: 10.1016/j.isci.2024.111686. eCollection 2025 Jan 17.
2
Bridging the"Last Millimeter" Gap of Brain-Machine Interfaces via Near-Infrared Wireless Power Transfer and Data Communications.
ACS Photonics. 2021 May 19;8(5):1430-1438. doi: 10.1021/acsphotonics.1c00160. Epub 2021 Apr 20.
3
Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes.
IEEE J Photovolt. 2020 Nov;10(6):1721-1726. doi: 10.1109/JPHOTOV.2020.3025450. Epub 2020 Oct 5.

本文引用的文献

1
Small-area Si Photovoltaics for Low-Flux Infrared Energy Harvesting.
IEEE Trans Electron Devices. 2017 Jan;64(1):15-20. doi: 10.1109/TED.2016.2626246. Epub 2016 Nov 17.
2
Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics.
IEEE Trans Electron Devices. 2017 Nov;64(11):4554-4560. doi: 10.1109/TED.2017.2746094. Epub 2017 Sep 6.
3
Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.
IEEE Trans Electron Devices. 2017 May;64(5):2432-2437. doi: 10.1109/TED.2017.2681694. Epub 2017 Mar 27.
4
Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.
IEEE Trans Electron Devices. 2016 Jul;63(7):2820-2825. doi: 10.1109/TED.2016.2569079.
5
Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
ACS Nano. 2017 Jan 24;11(1):992-999. doi: 10.1021/acsnano.6b07605. Epub 2017 Jan 11.
6
A >78%-Efficient Light Harvester over 100-to-100klux with Reconfigurable PV-Cell Network and MPPT Circuit.
Dig Tech Pap IEEE Int Solid State Circuits Conf. 2016 Jan-Feb;2016:370-371. doi: 10.1109/ISSCC.2016.7418061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验