Suppr超能文献

探索新冠疫情强制令实施期间马萨诸塞州关于健康、风险及公众情绪的讨论:一项推特分析。

Exploring discussions of health and risk and public sentiment in Massachusetts during COVID-19 pandemic mandate implementation: A Twitter analysis.

作者信息

Thorpe Huerta Danyellé, Hawkins Jared B, Brownstein John S, Hswen Yulin

机构信息

Harvard Medical School Department of Biomedical Informatics, Boston, MA, 02115, USA.

Boston Children's Hospital Computational Epidemiology Lab, Boston, MA, 02215, USA.

出版信息

SSM Popul Health. 2021 Jun 19;15:100851. doi: 10.1016/j.ssmph.2021.100851. eCollection 2021 Sep.

Abstract

As policies are adjusted throughout the COVID-19 pandemic according to public health best practices, there is a need to balance the importance of social distancing in preventing viral spread with the strain that these governmental public safety mandates put on public mental health. Thus, there is need for continuous observation of public sentiment and deliberation to inform further adaptation of mandated interventions. In this study, we explore how public response may be reflected in Massachusetts (MA) via social media by specifically exploring temporal patterns in Twitter posts (tweets) regarding sentiment and discussion of topics. We employ interrupted time series centered on (1) Massachusetts State of Emergency declaration (March 10), (2) US State of Emergency declaration (March 13) and (3) Massachusetts public school closure (March 17) to explore changes in tweet sentiment polarity (net negative/positive), expressed anxiety and discussion on risk and health topics on a random subset of all tweets coded within Massachusetts and published from January 1 to May 15, 2020 (n = 2.8 million). We find significant differences between tweets published before and after mandate enforcement for Massachusetts State of Emergency (increased discussion of risk and health, decreased polarity and increased anxiety expression), US State of Emergency (increased discussion of risk and health, and increased anxiety expression) and Massachusetts public school closure (increased discussion of risk and decreased polarity). Our work further validates that Twitter data is a reasonable way to monitor public sentiment and discourse within a crisis, especially in conjunction with other observation data.

摘要

在整个新冠疫情期间,政策依据公共卫生最佳实践进行调整,因此有必要在保持社交距离以防止病毒传播的重要性与政府公共安全指令给公众心理健康带来的压力之间取得平衡。所以,需要持续观察公众情绪并进行审议,以便为进一步调整强制干预措施提供依据。在本研究中,我们通过具体探究推特帖子(推文)中关于情绪和话题讨论的时间模式,来探索马萨诸塞州(MA)的公众反应如何通过社交媒体得到体现。我们采用中断时间序列,以(1)马萨诸塞州紧急状态声明(3月10日)、(2)美国紧急状态声明(3月13日)和(3)马萨诸塞州公立学校关闭(3月17日)为中心,来探究2020年1月1日至5月15日在马萨诸塞州编码并发布的所有推文中一个随机子集上的推文情绪极性(净负/正)、表达的焦虑以及关于风险和健康话题的讨论的变化(n = 280万)。我们发现,在马萨诸塞州紧急状态、美国紧急状态和马萨诸塞州公立学校关闭的强制令实施前后发布的推文之间存在显著差异(风险和健康讨论增加、极性降低以及焦虑表达增加)。我们的工作进一步验证了推特数据是监测危机期间公众情绪和话语的一种合理方式,尤其是与其他观测数据结合使用时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b3/8325089/43b2f538c040/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验