Suppr超能文献

用分散的金纳米颗粒修饰的石墨烯薄片作为离子选择性电极的纳米材料层

Graphene Flakes Decorated with Dispersed Gold Nanoparticles as Nanomaterial Layer for ISEs.

作者信息

Niemiec Barbara, Lenar Nikola, Piech Robert, Skupień Krzysztof, Paczosa-Bator Beata

机构信息

Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Krakow, Poland.

3D-Nano, ul. Lipowa 3, 30-702 Kraków, Poland.

出版信息

Membranes (Basel). 2021 Jul 20;11(7):548. doi: 10.3390/membranes11070548.

Abstract

This paper proposes a new type of solid-contact layer based on graphene/gold nanoparticles for ion-selective electrodes. A novel approach to preparing the material for intermediate layer by modifying the graphene flakes by gold nanoparticles is presented. With this approach, we observed a large surface area of material and in consequence high electrical capacitance of electrodes. We have obtained satisfactory results demonstrating that the modification of graphene with gold allows for enhancing electrical and wetting properties of carbon nanomaterial. Electrical capacitance of designed nanocomposite-contacted electrode equals to approximately 280 µF, which in consequence ensures great long-term potential stability defined by the potential drift of 36 μV/h. The modification of graphene with nanoparticles completely changed its wetting properties, as the designed material turned out to be hydrophobic with a water contact angle of 115°. Graphene/gold nanoparticles-contacted electrodes are insensitive to the changing light conditions, exhibiting near-Nernstian response in the potassium concentration range between 10 M and 10 M of K ions and may be applied in the pH range between 2 and 10.5.

摘要

本文提出了一种基于石墨烯/金纳米粒子的新型固体接触层用于离子选择性电极。介绍了一种通过金纳米粒子修饰石墨烯薄片来制备中间层材料的新方法。采用这种方法,我们观察到材料具有大的表面积,因此电极具有高电容。我们获得了令人满意的结果,表明用金修饰石墨烯能够增强碳纳米材料的电学和润湿性。设计的纳米复合材料接触电极的电容约为280 μF,这确保了由36 μV/h的电位漂移所定义的良好长期电位稳定性。用纳米粒子修饰石墨烯完全改变了其润湿性,因为所设计的材料结果是疏水的,水接触角为115°。石墨烯/金纳米粒子接触电极对变化的光照条件不敏感,在10⁻⁵ M至10⁻¹ M的钾离子浓度范围内表现出近能斯特响应,并可应用于2至10.5的pH范围内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d60/8306562/afd555f5ba63/membranes-11-00548-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验