Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany.
Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria.
Molecules. 2021 Aug 2;26(15):4678. doi: 10.3390/molecules26154678.
The interaction of small organic molecules such as drugs, agrochemicals, and cosmetics with cytochrome P450 enzymes (CYPs) can lead to substantial changes in the bioavailability of active substances and hence consequences with respect to pharmacological efficacy and toxicity. Therefore, efficient means of predicting the interactions of small organic molecules with CYPs are of high importance to a host of different industries. In this work, we present a new set of machine learning models for the classification of xenobiotics into substrates and non-substrates of nine human CYP isozymes: CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. The models are trained on an extended, high-quality collection of known substrates and non-substrates and have been subjected to thorough validation. Our results show that the models yield competitive performance and are favorable for the detection of CYP substrates. In particular, a new consensus model reached high performance, with Matthews correlation coefficients (MCCs) between 0.45 (CYP2C8) and 0.85 (CYP3A4), although at the cost of coverage. The best models presented in this work are accessible free of charge via the "CYPstrate" module of the New E-Resource for Drug Discovery (NERDD).
小分子有机化合物(如药物、农药和化妆品)与细胞色素 P450 酶(CYPs)的相互作用可导致活性物质生物利用度的显著变化,从而对药理学功效和毒性产生影响。因此,能够有效预测小分子有机化合物与 CYPs 相互作用的方法对于许多不同的行业都具有重要意义。在这项工作中,我们提出了一组新的机器学习模型,用于将外源化学物质分类为 9 个人类 CYP 同工酶(CYP1A2、2A6、2B6、2C8、2C9、2C19、2D6、2E1 和 3A4)的底物和非底物。这些模型是在一个扩展的、高质量的已知底物和非底物集合上进行训练的,并经过了全面的验证。我们的结果表明,这些模型的性能具有竞争力,有利于检测 CYP 底物。特别是,一个新的共识模型达到了很高的性能,其 Matthews 相关系数(MCCs)在 0.45(CYP2C8)到 0.85(CYP3A4)之间,尽管牺牲了覆盖范围。本工作中提出的最佳模型可通过药物发现新资源(NERDD)的“CYPstrate”模块免费获得。