Global Health Policy and Data Institute, San Diego, CA, USA.
Department of Anthropology, Global Health Program, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
BMC Res Notes. 2021 Aug 9;14(1):303. doi: 10.1186/s13104-021-05719-0.
The objective of this study was to develop an inductive coding approach specific to characterizing user-generated social media conversations about transition of use of different tobacco and alternative and emerging tobacco products (ATPs).
A total of 40,206 tweets were collected from the Twitter public API stream that were geocoded from 2018 to 2019. Using data mining approaches, these tweets were then filtered for keywords associated with tobacco and ATP use behavior. This resulted in a subset of 5718 tweets, with 657 manually annotated and identified as associated with user-generated conversations about tobacco and ATP use behavior. The 657 tweets were coded into 9 parent codes: inquiry, interaction, observation, opinion, promote, reply, share knowledge, use characteristics, and transition of use behavior. The highest number of observations occurred under transition of use (43.38%, n = 285), followed by current use (39.27%, n = 258), opinions about use (0.07%, n = 46), and product promotion (0.06%, n = 37). Other codes had less than ten tweets that discussed these themes. Results provide early insights into how social media users discuss topics related to transition of use and their experiences with different and emerging tobacco product use behavior.
本研究旨在开发一种专门用于描述用户生成的关于不同烟草和替代及新兴烟草产品(ATP)使用转换的社交媒体对话特征的归纳式编码方法。
从 2018 年至 2019 年,我们通过 Twitter 公共 API 流收集了共计 40206 条推文,并对其进行了地理位置编码。通过数据挖掘方法,我们根据与烟草和 ATP 使用行为相关的关键词对这些推文进行了筛选。这产生了一个包含 5718 条推文的子集,其中 657 条推文经过手动注释,被确定为与用户生成的关于烟草和 ATP 使用行为的对话相关。这 657 条推文被编码为 9 个父代码:询问、互动、观察、意见、推广、回复、分享知识、使用特征和使用行为的转变。在使用行为的转变(43.38%,n=285)下观察到的数量最多,其次是当前使用(39.27%,n=258)、关于使用的意见(0.07%,n=46)和产品推广(0.06%,n=37)。其他代码的讨论主题少于 10 条推文。结果提供了有关社交媒体用户如何讨论与使用转换相关的主题以及他们对不同和新兴烟草产品使用行为的经验的早期见解。