Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
Radiol Med. 2021 Nov;126(11):1425-1433. doi: 10.1007/s11547-021-01399-9. Epub 2021 Aug 9.
The assessment of Programmed death-ligand 1 (PD-L1) expression has become a game changer in the treatment of patients with advanced non-small cell lung cancer (NSCLC). We aimed to investigate the ability of Radiomics applied to computed tomography (CT) in predicting PD-L1 expression in patients with advanced NSCLC.
By applying texture analysis, we retrospectively analyzed 72 patients with advanced NSCLC. The datasets were randomly split into a training cohort (2/3) and a validation cohort (1/3). Forty radiomic features were extracted by manually drawing tumor volumes of interest (VOIs) on baseline contrast-enhanced CT. After selecting features on the training cohort, two predictive models were created using binary logistic regression, one for PD-L1 values ≥ 50% and the other for values between 1 and 49%. The two models were analyzed with ROC curves and tested in the validation cohort.
The Radiomic Score (Rad-Score) for PD-L1 values ≥ 50%, which consisted of Skewness and Low Gray-Level Zone Emphasis (GLZLM_LGZE), presented a cut-off value of - 0.745 with an area under the curve (AUC) of 0.811 and 0.789 in the training and validation cohort, respectively. The Rad-Score for PD-L1 values between 1 and 49% consisted of Sphericity, Skewness, Conv_Q3 and Gray Level Non-Uniformity (GLZLM_GLNU), showing a cut-off value of 0.111 with AUC of 0.763 and 0.806 in the two population, respectively.
Rad-Scores obtained from CT texture analysis could be useful for predicting PD-L1 expression and guiding the therapeutic choice in patients with advanced NSCLC.
程序性死亡配体 1(PD-L1)表达的评估已经成为治疗晚期非小细胞肺癌(NSCLC)患者的重大突破。本研究旨在探讨基于 CT 纹理分析预测晚期 NSCLC 患者 PD-L1 表达的能力。
本研究回顾性分析了 72 例晚期 NSCLC 患者。数据集被随机分为训练集(2/3)和验证集(1/3)。通过手动勾画基线增强 CT 上的肿瘤感兴趣区(VOI),提取 40 个纹理特征。在训练集上进行特征选择后,使用二元逻辑回归分别建立 PD-L1 值≥50%和 1-49%的两个预测模型。在验证集上,通过 ROC 曲线分析和测试评估两个模型。
PD-L1 值≥50%的 Rad-Score(由 Skewness 和低灰度区重点(GLZLM_LGZE)组成),在训练和验证集的截断值分别为-0.745,曲线下面积(AUC)分别为 0.811 和 0.789。PD-L1 值在 1-49%之间的 Rad-Score 由 Sphericity、Skewness、Conv_Q3 和灰度不均匀性(GLZLM_GLNU)组成,截断值为 0.111,在两个群体中的 AUC 分别为 0.763 和 0.806。
CT 纹理分析得到的 Rad-Scores 可用于预测 PD-L1 表达,并指导晚期 NSCLC 患者的治疗选择。