Suppr超能文献

定量 CT 纹理分析预测局部晚期或转移性 NSCLC 患者 PD-L1 表达。

Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients.

机构信息

Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

出版信息

Radiol Med. 2021 Nov;126(11):1425-1433. doi: 10.1007/s11547-021-01399-9. Epub 2021 Aug 9.

Abstract

PURPOSE

The assessment of Programmed death-ligand 1 (PD-L1) expression has become a game changer in the treatment of patients with advanced non-small cell lung cancer (NSCLC). We aimed to investigate the ability of Radiomics applied to computed tomography (CT) in predicting PD-L1 expression in patients with advanced NSCLC.

METHODS

By applying texture analysis, we retrospectively analyzed 72 patients with advanced NSCLC. The datasets were randomly split into a training cohort (2/3) and a validation cohort (1/3). Forty radiomic features were extracted by manually drawing tumor volumes of interest (VOIs) on baseline contrast-enhanced CT. After selecting features on the training cohort, two predictive models were created using binary logistic regression, one for PD-L1 values ≥ 50% and the other for values between 1 and 49%. The two models were analyzed with ROC curves and tested in the validation cohort.

RESULTS

The Radiomic Score (Rad-Score) for PD-L1 values ≥ 50%, which consisted of Skewness and Low Gray-Level Zone Emphasis (GLZLM_LGZE), presented a cut-off value of - 0.745 with an area under the curve (AUC) of 0.811 and 0.789 in the training and validation cohort, respectively. The Rad-Score for PD-L1 values between 1 and 49% consisted of Sphericity, Skewness, Conv_Q3 and Gray Level Non-Uniformity (GLZLM_GLNU), showing a cut-off value of 0.111 with AUC of 0.763 and 0.806 in the two population, respectively.

CONCLUSION

Rad-Scores obtained from CT texture analysis could be useful for predicting PD-L1 expression and guiding the therapeutic choice in patients with advanced NSCLC.

摘要

目的

程序性死亡配体 1(PD-L1)表达的评估已经成为治疗晚期非小细胞肺癌(NSCLC)患者的重大突破。本研究旨在探讨基于 CT 纹理分析预测晚期 NSCLC 患者 PD-L1 表达的能力。

方法

本研究回顾性分析了 72 例晚期 NSCLC 患者。数据集被随机分为训练集(2/3)和验证集(1/3)。通过手动勾画基线增强 CT 上的肿瘤感兴趣区(VOI),提取 40 个纹理特征。在训练集上进行特征选择后,使用二元逻辑回归分别建立 PD-L1 值≥50%和 1-49%的两个预测模型。在验证集上,通过 ROC 曲线分析和测试评估两个模型。

结果

PD-L1 值≥50%的 Rad-Score(由 Skewness 和低灰度区重点(GLZLM_LGZE)组成),在训练和验证集的截断值分别为-0.745,曲线下面积(AUC)分别为 0.811 和 0.789。PD-L1 值在 1-49%之间的 Rad-Score 由 Sphericity、Skewness、Conv_Q3 和灰度不均匀性(GLZLM_GLNU)组成,截断值为 0.111,在两个群体中的 AUC 分别为 0.763 和 0.806。

结论

CT 纹理分析得到的 Rad-Scores 可用于预测 PD-L1 表达,并指导晚期 NSCLC 患者的治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/708b/8558266/efae2857eb30/11547_2021_1399_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验