Suppr超能文献

在全基因组遗传架构下的孟德尔随机化。

Mendelian randomization under the omnigenic architecture.

机构信息

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab322.

Abstract

Mendelian randomization (MR) is a common analytic tool for exploring the causal relationship among complex traits. Existing MR methods require selecting a small set of single nucleotide polymorphisms (SNPs) to serve as instrument variables. However, selecting a small set of SNPs may not be ideal, as most complex traits have a polygenic or omnigenic architecture and are each influenced by thousands of SNPs. Here, motivated by the recent omnigenic hypothesis, we present an MR method that uses all genome-wide SNPs for causal inference. Our method uses summary statistics from genome-wide association studies as input, accommodates the commonly encountered horizontal pleiotropy effects and relies on a composite likelihood framework for scalable computation. We refer to our method as the omnigenic Mendelian randomization, or OMR. We examine the power and robustness of OMR through extensive simulations including those under various modeling misspecifications. We apply OMR to several real data applications, where we identify multiple complex traits that potentially causally influence coronary artery disease (CAD) and asthma. The identified new associations reveal important roles of blood lipids, blood pressure and immunity underlying CAD as well as important roles of immunity and obesity underlying asthma.

摘要

孟德尔随机化(MR)是一种常用于探索复杂性状之间因果关系的分析工具。现有的 MR 方法需要选择一小部分单核苷酸多态性(SNP)作为工具变量。然而,选择一小部分 SNP 可能并不理想,因为大多数复杂性状具有多基因或全基因组结构,并且受到数千个 SNP 的影响。在这里,受最近全基因组假说的启发,我们提出了一种使用全基因组 SNP 进行因果推断的 MR 方法。我们的方法使用全基因组关联研究的汇总统计数据作为输入,适应常见的水平多效性效应,并依赖组合似然框架进行可扩展计算。我们将这种方法称为全基因组孟德尔随机化(OMR)。我们通过广泛的模拟研究来评估 OMR 的功效和稳健性,包括各种模型指定错误的情况。我们将 OMR 应用于多个真实数据应用程序,在这些应用程序中,我们确定了多个可能因果地影响冠心病(CAD)和哮喘的复杂性状。确定的新关联揭示了 CAD 下血脂、血压和免疫的重要作用以及哮喘下免疫和肥胖的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验