Suppr超能文献

基于视觉诱发电位的自然纹理感知分析与综合

Analysis and Synthesis of Natural Texture Perception From Visual Evoked Potentials.

作者信息

Orima Taiki, Motoyoshi Isamu

机构信息

Department of Life Sciences, The University of Tokyo, Tokyo, Japan.

Japan Society for the Promotion of Science, Tokyo, Japan.

出版信息

Front Neurosci. 2021 Jul 26;15:698940. doi: 10.3389/fnins.2021.698940. eCollection 2021.

Abstract

The primate visual system analyzes statistical information in natural images and uses it for the immediate perception of scenes, objects, and surface materials. To investigate the dynamical encoding of image statistics in the human brain, we measured visual evoked potentials (VEPs) for 166 natural textures and their synthetic versions, and performed a reverse-correlation analysis of the VEPs and representative texture statistics of the image. The analysis revealed occipital VEP components strongly correlated with particular texture statistics. VEPs correlated with low-level statistics, such as subband SDs, emerged rapidly from 100 to 250 ms in a spatial frequency dependent manner. VEPs correlated with higher-order statistics, such as subband kurtosis and cross-band correlations, were observed at slightly later times. Moreover, these robust correlations enabled us to inversely estimate texture statistics from VEP signals via linear regression and to reconstruct texture images that appear similar to those synthesized with the original statistics. Additionally, we found significant differences in VEPs at 200-300 ms between some natural textures and their Portilla-Simoncelli (PS) synthesized versions, even though they shared almost identical texture statistics. This differential VEP was related to the perceptual "unnaturalness" of PS-synthesized textures. These results suggest that the visual cortex rapidly encodes image statistics hidden in natural textures specifically enough to predict the visual appearance of a texture, while it also represents high-level information beyond image statistics, and that electroencephalography can be used to decode these cortical signals.

摘要

灵长类动物视觉系统分析自然图像中的统计信息,并将其用于对场景、物体和表面材质的即时感知。为了研究人类大脑中图像统计信息的动态编码,我们测量了166种自然纹理及其合成版本的视觉诱发电位(VEP),并对VEP与图像的代表性纹理统计信息进行了反向相关性分析。分析揭示了枕叶VEP成分与特定纹理统计信息密切相关。与低层次统计信息(如子带标准差)相关的VEP,在100至250毫秒内以空间频率依赖的方式迅速出现。与高层次统计信息(如子带峰度和跨带相关性)相关的VEP则在稍晚的时间被观察到。此外,这些稳健的相关性使我们能够通过线性回归从VEP信号中反向估计纹理统计信息,并重建出与用原始统计信息合成的纹理图像相似的纹理图像。此外,我们发现一些自然纹理与其Portilla-Simoncelli(PS)合成版本在200至300毫秒时的VEP存在显著差异,尽管它们共享几乎相同的纹理统计信息。这种差异VEP与PS合成纹理的感知“不自然性”有关。这些结果表明,视觉皮层能够快速且足够特异性地编码隐藏在自然纹理中的图像统计信息,以预测纹理的视觉外观,同时它也代表了超出图像统计信息的高层次信息,并且脑电图可用于解码这些皮层信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3a/8350323/60310ab4a52f/fnins-15-698940-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验