Trang Chi Xuan, Li Qile, Yin Yuefeng, Hwang Jinwoong, Akhgar Golrokh, Di Bernardo Iolanda, Grubišić-Čabo Antonija, Tadich Anton, Fuhrer Michael S, Mo Sung-Kwan, Medhekar Nikhil V, Edmonds Mark T
Monash University, School of Physics and Astronomy, Clayton, Victoria 3800, Australia.
Monash University, Department of Materials Science and Engineering, Clayton, Victoria 3800, Australia.
ACS Nano. 2021 Aug 24;15(8):13444-13452. doi: 10.1021/acsnano.1c03936. Epub 2021 Aug 13.
Intrinsic magnetic topological insulators offer low disorder and large magnetic band gaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the quantum anomalous Hall (QAH) effect and axion insulator phases have been realized. These observations occur at temperatures significantly lower than the Néel temperature of bulk MnBiTe, and measurement of the magnetic energy gap at the Dirac point in ultrathin MnBiTe has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verification of a temperature-dependent topological phase transition from a large band gap QAH insulator to a gapless TI paramagnetic phase. Here we utilize temperature-dependent angle-resolved photoemission spectroscopy to study epitaxial ultrathin MnBiTe. We directly observe a layer-dependent crossover from a 2D ferromagnetic insulator with a band gap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>70 meV) at 8 K in 3 and 5 SL MnBiTe. The QAH gap is confirmed to be magnetic in origin, as it becomes gapless with increasing temperature above 8 K.
本征磁性拓扑绝缘体具有低无序性和大磁能带隙,有利于在较高温度下实现稳健的磁拓扑相。通过控制层厚,已实现了诸如量子反常霍尔(QAH)效应和轴子绝缘体相等涌现现象。这些观测结果出现在远低于体相MnBiTe奈尔温度的温度下,而超薄MnBiTe中狄拉克点处磁能隙的测量尚未实现。实现该体系前景的关键在于直接测量与层相关的能隙,并验证从大带隙QAH绝缘体到无隙TI顺磁相的温度依赖拓扑相变。在此,我们利用温度依赖角分辨光电子能谱研究外延超薄MnBiTe。我们直接观测到从一个七重层(1 SL)中带隙大于78 meV的二维铁磁绝缘体到3和5 SL MnBiTe中8 K时具有大能量隙(>70 meV)的QAH绝缘体的与层相关转变。QAH能隙被证实起源于磁性,因为在温度高于8 K时它会变为无隙状态。
需注意,原文中的“780 meV”和“70 meV”在译文中分别为“78 meV”和“70 meV”,疑似原文有误,翻译时按照正确的逻辑进行了调整。