State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China.
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China.
Water Res. 2021 Sep 15;203:117484. doi: 10.1016/j.watres.2021.117484. Epub 2021 Jul 31.
The frequently occurring redox fluctuations in paddy soil are critical to the cycling of redox-sensitive elements (e.g., iron (Fe) and carbon) due to the driving of microbial processes. However, the associated abiotic process, such as hydroxyl radical (OH) formation, was rarely investigated. Hence, we examined the under-appreciated role of OH formation in driving polycyclic aromatic hydrocarbons (PAHs) degradation upon oxygenation of anoxic paddy slurries. Results showed that OH production largely differed in different paddy slurries, in the range of 271.5-581.2 μmol kg soil after 12 h reaction. The OH production was highly hinged on the contents of active Fe species, i.e., exchangeable, surface-bound Fe and Fe in low-crystalline phases rather than Fe in high-crystalline minerals or silicates. Besides, OH production significantly decreased with increasing soil depth due to the declined active Fe species and abundance of functional microbes. Oxygenation also induced the transformation of these active Fe species into the low- and high-crystalline phases, which might affect the following redox process. The produced OH can efficiently degrade PAHs with degradation extents depending on their physiochemical properties. Our findings highlight the key roles of active Fe species in driving OH formation and organic contaminants degradation during redox fluctuations of paddy soils.
稻田土壤中频繁发生的氧化还原波动对氧化还原敏感元素(如铁 (Fe) 和碳)的循环至关重要,这是由于微生物过程的驱动。然而,相关的非生物过程,如羟基自由基 (OH) 的形成,很少被研究。因此,我们研究了在缺氧稻田泥浆充氧过程中,OH 形成在驱动多环芳烃 (PAHs) 降解方面的被低估的作用。结果表明,OH 的产生在不同的稻田泥浆中存在很大差异,在 12 小时反应后范围为 271.5-581.2 μmol kg 土壤。OH 的产生高度依赖于活性 Fe 物种的含量,即可交换、表面结合的 Fe 和低结晶相中的 Fe,而不是高结晶矿物或硅酸盐中的 Fe。此外,由于活性 Fe 物种和功能微生物丰度的下降,OH 的产生随着土壤深度的增加而显著减少。充氧还诱导这些活性 Fe 物种向低结晶相和高结晶相转化,这可能会影响随后的氧化还原过程。产生的 OH 可以有效地降解 PAHs,降解程度取决于它们的物理化学性质。我们的研究结果强调了活性 Fe 物种在稻田土壤氧化还原波动过程中驱动 OH 形成和有机污染物降解中的关键作用。