Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
Plant Physiol Biochem. 2021 Oct;167:309-320. doi: 10.1016/j.plaphy.2021.08.002. Epub 2021 Aug 4.
Photosynthesis is a fundamental biosynthetic process in plants that can enhance carbon absorption and increase crop productivity. Heat stress severely inhibits photosynthetic efficiency. Melatonin is a bio-stimulator capable of regulating diverse abiotic stress tolerances. However, the underlying mechanisms of melatonin-mediated photosynthesis in plants exposed to heat stress largely remain elucidated. Our results revealed that melatonin treatment (100 μM) in tomato seedlings increased the endogenous melatonin levels and photosynthetic pigment content along with upregulated of their biosynthesis gene expression under high-temperature stress (42 °C for 24 h), whereas heat stress significantly decreased the values of gas exchange parameters. Under heat stress, melatonin boosted CO assimilation, i.e., V (maximum rate of ribulose-1,5-bisphosphate carboxylase, Rubisco), and J (electron transport of Rubisco generation) and also enhanced the Rubisco and FBPase activities, which resulted in upregulated photosynthetic related gene expression. In addition, heat stress greatly reduced the photochemical chemistry of photosystem II (PSII) and photosystem I (PSI), particularly the maximum quantum efficiency of PSII (Fv/Fm) and PSI (Pm). Conversely, melatonin supplementation increased the chlorophyll a fluorescence parameters led to amplifying the electron transport efficiency. Moreover, heat stress decreased the actual PSII efficiency (ΦPSII), electron transport rate (ETR) and photochemical quenching coefficient (qP), while increasing nonphotochemical quenching (NPQ); however, melatonin reversed these values, which helps to fostering the dissipation of excess excitation energy. Taken together, our results provide a concrete insight into the efficacy of melatonin-mediated photosynthesis performance in a high-temperature regime.
光合作用是植物的一种基本生物合成过程,可以增强碳吸收并提高作物生产力。热应激严重抑制光合作用效率。褪黑素是一种生物刺激剂,能够调节多种非生物胁迫耐受性。然而,褪黑素介导的植物在热应激下的光合作用的潜在机制在很大程度上仍未阐明。我们的结果表明,在番茄幼苗中,100μM 的褪黑素处理可增加内源性褪黑素水平和光合色素含量,并上调高温胁迫(42°C 24 小时)下它们的生物合成基因表达,而热应激显著降低了气体交换参数的值。在热应激下,褪黑素促进了 CO 同化,即 V(核酮糖-1,5-二磷酸羧化酶,Rubisco 的最大速率)和 J(Rubisco 生成的电子传递),并增强了 Rubisco 和 FBPase 的活性,从而导致光合作用相关基因表达上调。此外,热应激大大降低了光系统 II(PSII)和光系统 I(PSI)的光化学,特别是 PSII(Fv/Fm)和 PSI(Pm)的最大量子效率。相反,褪黑素补充剂增加了叶绿素 a 荧光参数,从而提高了电子传递效率。此外,热应激降低了实际 PSII 效率(ΦPSII)、电子传递速率(ETR)和光化学猝灭系数(qP),同时增加了非光化学猝灭(NPQ);然而,褪黑素扭转了这些值,有助于促进过剩激发能的耗散。总之,我们的结果为褪黑素介导的光合作用在高温条件下的效能提供了具体的见解。