Graduate School of Informatics, Nagoya University, Nagoya, Japan.
Information Strategy Office, Information and Communications, Graduate School of Informatics, Nagoya University, Nagoya, Japan.
Int J Comput Assist Radiol Surg. 2021 Oct;16(10):1795-1804. doi: 10.1007/s11548-021-02460-8. Epub 2021 Aug 15.
Bronchoscopists rely on navigation systems during bronchoscopy to reduce the risk of getting lost in the complex bronchial tree-like structure and the homogeneous bronchus lumens. We propose a patient-specific branching level estimation method for bronchoscopic navigation because it is vital to identify the branches being examined in the bronchus tree during examination.
We estimate the branching level by integrating the changes in the number of bronchial orifices and the camera motions among the frames. We extract the bronchial orifice regions from a depth image, which is generated using a cycle generative adversarial network (CycleGAN) from real bronchoscopic images. We calculate the number of orifice regions using the vertical and horizontal projection profiles of the depth images and obtain the camera-moving direction using the feature point-based camera motion estimation. The changes in the number of bronchial orifices are combined with the camera-moving direction to estimate the branching level.
We used three in vivo and one phantom case to train the CycleGAN model and four in vivo cases to validate the proposed method. We manually created the ground truth of the branching level. The experimental results showed that the proposed method can estimate the branching level with an average accuracy of 87.6%. The processing time per frame was about 61 ms.
Experimental results show that it is feasible to estimate the branching level using the number of bronchial orifices and camera-motion estimation from real bronchoscopic images.
支气管镜医师在支气管镜检查中依赖导航系统来降低在复杂的支气管树状结构和同质支气管管腔中迷路的风险。我们提出了一种用于支气管镜导航的患者特异性分支水平估计方法,因为在检查过程中识别支气管树中正在检查的分支至关重要。
我们通过整合支气管口数量的变化和帧间相机运动来估计分支水平。我们从深度图像中提取支气管口区域,该深度图像是使用真实支气管镜图像的循环生成对抗网络(CycleGAN)生成的。我们使用深度图像的垂直和水平投影轮廓计算口区域的数量,并使用基于特征点的相机运动估计获得相机运动方向。支气管口数量的变化与相机运动方向相结合以估计分支水平。
我们使用三个体内和一个体模病例来训练 CycleGAN 模型,并使用四个体内病例来验证所提出的方法。我们手动创建了分支水平的真实情况。实验结果表明,该方法可以以 87.6%的平均准确率估计分支水平。每帧的处理时间约为 61 毫秒。
实验结果表明,使用真实支气管镜图像中的支气管口数量和相机运动估计来估计分支水平是可行的。