Suppr超能文献

基于振动的干颅骨内、外板弹性参数识别。

Vibration-based elastic parameter identification of the diploë and cortical tables in dry cranial bones.

机构信息

G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Dr NW, Atlanta, GA 30332, USA.

P. M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA.

出版信息

J Mech Behav Biomed Mater. 2021 Nov;123:104747. doi: 10.1016/j.jmbbm.2021.104747. Epub 2021 Aug 5.

Abstract

Various human skull models feature a layered cranial structure composed of homogeneous cortical tables and the inner diploë. However, there is a lack of fundamental validation work of such three-layer cranial bone models by combining high-fidelity computational modeling and rigorous experiments. Here, non-contact vibration experiments are conducted on an assortment of dry bone segments from the largest cranial bone regions (parietal, frontal, occipital, and temporal) to estimate the first handful of modal frequencies and damping ratios, as well as mode shapes, in the audio frequency regime. Numerical models that consider the cortical tables and the diploë as domains with separate isotropic material properties are constructed for each bone segment using a routine that identifies the cortical table-diploë boundaries from micro-computed tomography scan images, and reconstructs a three-dimensional geometry layer by layer. The material properties for cortical tables and diploë are obtained using a Hounsfield Unit-based mass density calculation combined with a parameter identification scheme for Young's modulus estimation. With the identified parameters, the average error between experimental and numerical modal frequencies is 1.3% and the modal assurance criterion values for most modes are above 0.90, indicating that the layered model is suitable for predicting the vibrational behavior of cranial bone. The proposed layered modeling and identified elastic parameters are also useful to support computational modeling of cranial guided waves and mode conversion in medical ultrasound. Additionally, the diploë elastic properties are rarely reported in the literature, making this work a fundamental characterization effort that can guide in the selection of material properties for human head models that consider layered cranial bone.

摘要

各种人类颅骨模型都具有分层的颅骨结构,由同质的皮质板和内部板障组成。然而,将高保真计算建模和严格实验相结合,对这种三层颅骨模型进行基础验证的工作还很少。在这里,对来自最大颅骨区域(顶骨、额骨、枕骨和颞骨)的各种干骨段进行非接触式振动实验,以估算音频范围内的前几个模态频率和阻尼比,以及模态形状。对于每个骨段,使用一种从微计算机断层扫描图像中识别皮质板-板障边界并逐层重建三维几何形状的例程,为每个骨段构建了考虑皮质板和板障为具有单独各向同性材料特性的域的数值模型。使用基于亨氏单位的质量密度计算和杨氏模量估计的参数识别方案获得皮质板和板障的材料特性。使用识别出的参数,实验模态频率和数值模态频率之间的平均误差为 1.3%,大多数模式的模态保证准则值都高于 0.90,表明分层模型适合预测颅骨的振动行为。所提出的分层建模和识别出的弹性参数也有助于支持颅骨导波和医学超声中的模式转换的计算建模。此外,板障的弹性特性在文献中很少报道,因此这项工作是一项基础性的特征描述工作,可以为考虑分层颅骨的人体头部模型选择材料特性提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验