Suppr超能文献

当前日历年度美国和州级癌症计数预测方法更新:第二部分:发病率和死亡率预测方法评估。

Updated Methodology for Projecting U.S.- and State-Level Cancer Counts for the Current Calendar Year: Part II: Evaluation of Incidence and Mortality Projection Methods.

机构信息

Surveillance and Health Equity Science, American Cancer Society, Kennesaw, Georgia.

Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland.

出版信息

Cancer Epidemiol Biomarkers Prev. 2021 Nov;30(11):1993-2000. doi: 10.1158/1055-9965.EPI-20-1780. Epub 2021 Aug 17.

Abstract

BACKGROUND

The American Cancer Society (ACS) and the NCI collaborate every 5 to 8 years to update the methods for estimating the numbers of new cancer cases and deaths in the current year for the U.S. and individual states. Herein, we compare our current projection methodology with the next generation of statistical models.

METHODS

A validation study was conducted comparing current projection methods (vector autoregression for incidence; Joinpoint regression for mortality) with the Bayes state-space method and novel Joinpoint algorithms. Incidence data from 1996-2010 were projected to 2014 using two inputs: modeled data and observed data with modeled where observed were missing. For mortality, observed data from 1995 to 2009, 1996 to 2010, 1997 to 2011, and 1998 to 2012, each projected 3 years forward to 2012 to 2015. Projection methods were evaluated using the average absolute relative deviation (AARD) between observed counts (2014 for incidence, 2012-2015 for mortality) and estimates for 47 cancer sites nationally and 21 sites by state.

RESULTS

A novel Joinpoint model provided a good fit for both incidence and mortality, particularly for the most common cancers in the U.S. Notably, the AARD for cancers with cases in 2014 exceeding 49,000 for this model was 3.4%, nearly half that of the current method (6.3%).

CONCLUSIONS

A data-driven Joinpoint algorithm had versatile performance at the national and state levels and will replace the ACS's current methods.

IMPACT

This methodology provides estimates of cancer data that are not available for the current year, thus continuing to fill an important gap for advocacy, research, and public health planning.

摘要

背景

美国癌症协会(ACS)和 NCI 每隔 5 到 8 年就会合作更新美国和各州当年新癌症病例和死亡人数的估算方法。在此,我们将比较当前的预测方法与下一代统计模型。

方法

一项验证研究比较了当前的预测方法(发病率的向量自回归;死亡率的 Joinpoint 回归)与贝叶斯状态空间法和新的 Joinpoint 算法。使用两种输入数据(模型数据和缺失观察数据的模型数据)将 1996-2010 年的发病率数据预测到 2014 年。对于死亡率,使用 1995 年至 2009 年、1996 年至 2010 年、1997 年至 2011 年和 1998 年至 2012 年的观察数据,将每年向前预测 3 年,直至 2012 年至 2015 年。使用平均绝对相对偏差(AARD)来评估预测方法,观察计数(发病率为 2014 年,死亡率为 2012-2015 年)与全国 47 个癌症部位和 21 个州的估计值之间的 AARD。

结果

一种新的 Joinpoint 模型对发病率和死亡率都有很好的拟合效果,特别是对美国最常见的癌症。值得注意的是,对于该模型病例数超过 49000 的癌症,AARD 为 3.4%,几乎是当前方法(6.3%)的一半。

结论

一种数据驱动的 Joinpoint 算法在国家和州级具有广泛的性能,将取代 ACS 当前的方法。

影响

这种方法提供了当年无法获得的癌症数据估计值,因此继续为宣传、研究和公共卫生规划填补了一个重要的空白。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验