Suppr超能文献

应用紊流有限元模型计算动脉分又处的血流。

Turbulent finite element model applied for blood flow calculation in arterial bifurcation.

机构信息

Institute of Information Technologies, University of Kragujevac, Department of Technical- Technological Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia.

Institute of Information Technologies, University of Kragujevac, Department of Technical- Technological Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia.

出版信息

Comput Methods Programs Biomed. 2021 Sep;209:106328. doi: 10.1016/j.cmpb.2021.106328. Epub 2021 Aug 5.

Abstract

BACKGROUND AND OBJECTIVE

Due to the relatively low fluid velocities in major arteries and veins, blood flow is by default laminar, however, turbulence can occur as a result of stenosis or other obstacles. Hemodynamic parameters like Wall Shear Stress or Oscillatory Shear Index can be used for plaque formation prediction, and these parameters are depended on the nature of the flow. Implementation of the k-ω turbulent flow in the Finite Element solver aims to improve numerical analysis of cardio-vascular condition development and progression. Calculation of turbulent fluid flow in this paper is performed using a two-equation turbulent finite element model that can calculate values in the viscous sublayer.

METHODS

Implicit integration of the equations is used for determining the fluid velocity, turbulent kinetic energy and dissipation of turbulent kinetic energy. These values are calculated in the finite element nodes for each step of the incremental-iterative procedure. Developed turbulent finite element model with the customized generation of finite element meshes is used for calculating complex blood flow problems.

RESULTS

Turbulent model is verified on an example of fluid flow in the backward-facing step channel and analysis results correspond well with the experimental ones from the literature. Further, a turbulent model is applied for the simulation of blood flow through artery bifurcation. Verification of numerical examples obtained using different commercial software packages (Ansys, COMSOL Multiphysics) ensuring usage and accuracy of PAK in-house solver.

CONCLUSIONS

Analysis results show that turbulence cannot be neglected in the modelling of cardio-vascular conditions and that cardiologists can use the proposed tools and methods for investigating the hemodynamic conditions inside the bifurcation of arteries. Appropriate agreement between experimental results, and results obtained using commercial solutions and the k-ω turbulent flow in the Finite Element solver PAK, validate methodology presented in this paper. However, small deviations between the results underline the importance of the proper boundary condition prescription and mesh size and node distribution, which is also discussed in this paper. Due to the implicit integration implemented in PAK solver, time step size has an insignificant influence on the analysis results, assuming the initial time increments are sufficiently small to ensure proper discretization of velocity and pressure pulsatile functions.

摘要

背景与目的

由于大动脉和大静脉中的血流速度相对较低,默认情况下血流为层流,但由于狭窄或其他障碍物的存在,也可能发生湍流。壁面切应力或脉动剪切指数等血液动力学参数可用于预测斑块形成,这些参数取决于流动的性质。在有限元求解器中实现 k-ω 湍流,旨在改进心血管状况发展和进展的数值分析。本文使用双方程湍流有限元模型计算湍流流体的流动,该模型可以计算粘性子层中的值。

方法

通过隐式积分来确定流体速度、湍流动能和湍流动能耗散。在增量迭代过程的每一步中,在有限元节点上计算这些值。使用带有自定义生成的有限元网格的开发的湍流有限元模型来计算复杂的血流问题。

结果

在背流台阶通道中的流体流动示例上验证了湍流模型,分析结果与文献中的实验结果非常吻合。进一步,将湍流模型应用于动脉分叉处的血流模拟。通过使用不同商业软件包(Ansys、COMSOL Multiphysics)获得数值示例的验证,确保了 PAK 内部求解器的使用和准确性。

结论

分析结果表明,在心血管状况建模中不能忽略湍流,心脏病专家可以使用所提出的工具和方法来研究动脉分叉处的血液动力学条件。实验结果、商业解决方案和 PAK 中的 k-ω 湍流获得的结果之间的适当一致性验证了本文提出的方法。然而,结果之间的微小偏差强调了适当的边界条件规定和网格大小以及节点分布的重要性,本文也对此进行了讨论。由于 PAK 求解器中实现的隐式积分,时间步长对分析结果的影响不大,前提是初始时间增量足够小,以确保速度和压力脉动函数的适当离散化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验