Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Sci Total Environ. 2021 Oct 15;791:148429. doi: 10.1016/j.scitotenv.2021.148429. Epub 2021 Jun 10.
Third generation biomass (marine macroalgae) has been projected as a promising alternative energy resource for bioethanol production due to its high carbon and no lignin composition. However, the major challenge in the technologies of production lies in the fermentative bioconversion process. Therefore, in the present study the predictive ability of an integrated artificial neural network with genetic algorithm (ANN-GA) in the modelling of bioethanol production was investigated for an indigenous marine macroalgal biomass (Ulva prolifera) by a novel yeast strain, Saccharomyces cerevisiae NFCCI1248 using six fermentative parameters, viz., substrate concentration, fermentation time, inoculum size, temperature, agitation speed and pH. The experimental model was developed using one-variable-at-a-time (OVAT) method to analyze the effects of the fermentative parameters on bioethanol production and the obtained regression equation was used as a fitness function for the ANN-GA modelling. The ANN-GA model predicted a maximum bioethanol production at 30 g/L substrate, 48 h fermentation time, 10% (v/v) inoculum, 30 °C temperature, 50 rpm agitation speed and pH 6. The maximum experimental bioethanol yield obtained after applying ANN-GA was 0.242 ± 0.002 g/g RS, which was in close proximity with the predicted value (0.239 g/g RS). Hence, the developed ANN-GA model can be applied as an efficient approach for predicting the fermentative bioethanol production from macroalgal biomass.
第三代生物质(海洋大型藻类)因其高碳和无木质素组成而被预测为生产生物乙醇的有前途的替代能源。然而,生产技术的主要挑战在于发酵生物转化过程。因此,在本研究中,通过使用新型酵母菌株酿酒酵母 NFCCI1248,对本地海洋大型藻类生物质(浒苔)的生物乙醇生产进行了集成人工神经网络与遗传算法(ANN-GA)的预测能力研究,使用了六个发酵参数,即底物浓度、发酵时间、接种量、温度、搅拌速度和 pH 值。实验模型是使用单变量法(OVAT)开发的,用于分析发酵参数对生物乙醇生产的影响,所得回归方程被用作 ANN-GA 建模的适应度函数。ANN-GA 模型预测在 30 g/L 底物、48 h 发酵时间、10%(v/v)接种量、30°C 温度、50 rpm 搅拌速度和 pH 值 6 的条件下可获得最大生物乙醇产量。应用 ANN-GA 后获得的最大实验生物乙醇得率为 0.242±0.002 g/g RS,与预测值(0.239 g/g RS)非常接近。因此,开发的 ANN-GA 模型可作为预测海藻生物质发酵生物乙醇生产的有效方法。