Suppr超能文献

基于风速、风向和功率数据的风能潜力评估。

Wind energy potential assessment based on wind speed, its direction and power data.

作者信息

Wang Zhiming, Liu Weimin

机构信息

School of Mechanical and Electronic Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.

Gansu Province Special Equipment Inspection and Testing Institute, Lanzhou, 730050, China.

出版信息

Sci Rep. 2021 Aug 19;11(1):16879. doi: 10.1038/s41598-021-96376-7.

Abstract

Based on wind speed, direction and power data, an assessment method of wind energy potential using finite mixture statistical distributions is proposed. Considering the correlation existing and the effect between wind speed and direction, the angular-linear modeling approach is adopted to construct the joint probability density function of wind speed and direction. For modeling the distribution of wind power density and estimating model parameters of null or low wind speed and multimodal wind speed data, based on expectation-maximization algorithm, a two-component three-parameter Weibull mixture distribution is chosen as wind speed model, and a von Mises mixture distribution with nine components and six components are selected as the models of wind direction and the correlation circular variable between wind speed and direction, respectively. A comprehensive technique of model selection, which includes Akaike information criterion, Bayesian information criterion, the coefficient of determination R and root mean squared error, is used to select the optimal model in all candidate models. The proposed method is applied to averaged 10-min field monitoring wind data and compared with the other estimation methods and judged by the values of R and root mean squared error, histogram plot and wind rose diagram. The results show that the proposed method is effective and the area under study is not suitable for wide wind turbine applications, and the estimated wind energy potential would be inaccuracy without considering the influence of wind direction.

摘要

基于风速、风向和功率数据,提出了一种利用有限混合统计分布的风能潜力评估方法。考虑到风速和风向之间存在的相关性及其影响,采用角线性建模方法构建风速和风向的联合概率密度函数。为了对风电功率密度分布进行建模,并估计零风速或低风速以及多峰风速数据的模型参数,基于期望最大化算法,选择双分量三参数威布尔混合分布作为风速模型,分别选择九分量和六分量的冯·米塞斯混合分布作为风向模型以及风速与风向之间的相关圆形变量模型。采用包括赤池信息准则、贝叶斯信息准则、决定系数R和均方根误差在内的综合模型选择技术,在所有候选模型中选择最优模型。将所提方法应用于平均10分钟的现场监测风数据,并与其他估计方法进行比较,通过R值和均方根误差、直方图和风向玫瑰图进行判断。结果表明,所提方法是有效的,且研究区域不适合广泛应用风力涡轮机,若不考虑风向的影响,估计的风能潜力将不准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc5a/8377008/dcbe6dc893dc/41598_2021_96376_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验